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Abstract

The di↵erentiated demand model of Berry, Levinsohn and Pakes (1995) is widely

used in empirical economic research. Previous literature has demonstrated numerical

instabilities of the corresponding GMM estimator that give a wide range of parameter

estimates and economic implications depending on technical details such as the choice

of optimization algorithm, starting values, and convergence criteria. We show that

these instabilities are mainly driven by numerical approximation errors of the moment

function which is not analytically available. With accurate approximation, the estima-

tor is well-behaved. We also discuss approaches to mitigate the computational burden

of accurate approximation and provide code for download.
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1 Introduction

The seminal contribution of Berry, Levinsohn and Pakes (1995; henceforth BLP) has pro-

vided economists with an oligopoly model of di↵erentiated product markets that is capable

of producing realistic substitution patterns. The BLP model allows for partially or fully

unobserved preference heterogeneity among economic agents and explicitly deals with the

endogeneity of product attributes, typically price, and makes it possible to investigate coun-

terfactual market outcomes. Apart from being applied to markets and questions that lie at

the heart of Industrial Organization, the model’s use has spread to the areas of environmental

economics, insurance, voting preferences, and housing markets among others (see Table 1 in

Berry and Haile (2014)). The BLP model is parsimonious - compared to the standard logit

model only a limited number of additional coe�cients must be estimated - and its flexible

functional form allows for arbitrary correlations between prices and markups. Products with

similar attributes can be closer substitutes than products with very di↵erent characteristics.1

Consistent identification of the preference parameters depends on the sample moments,

which are the product of relevant and valid instrumental variables (IVs) and the BLP model’s

structural error term. To obtain estimates of the structural error, the observed aggregate

market shares have to be inverted. In contrast to the standard logit or nested logit model,

where this inversion can be performed analytically (Berry, 1994), in the BLP model it must

be computed numerically.

Using the U.S. automobile market data from BLP, Knittel and Metaxoglou (2014; hence-

forth KM) re-examine the nested fixed point estimator’s behavior and find a very wide set

of parameter estimates and economic implications. The particular choice of starting guess,

optimization algorithm and inner convergence threshold has a substantial e↵ect on the es-

timation outcomes. Given the large spread of the estimates, the credibility of the approach

is drawn into question. This Knittel-Metaxoglou critique has urged researchers to more

carefully implement the BLP estimation framework and to more transparently report imple-

mentation details and estimation results (see the supplemental appendix of Goldberg and

Hellerstein (2013) for an example).

KM use the same set of 50 standard Monte Carlo draws throughout all of their esti-

mations and thereby ignore the impact of simulation error. With the exact same data,

instruments and starting guesses we show that their findings are fully explained by the low

1In the standard logit model prices and markups are negatively related: high-priced products have lower
markups than their low-priced rivals. Moreover, it is highly likely that the best substitute for any other
product is the product with the largest market share.
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number of Monte Carlo draws used, which causes substantial simulation error.2 Our main

findings are twofold. First, with a crude numerical integration approach the estimate of the

structural error term is overwhelmed by simulation error. The biased structural error esti-

mates enter the GMM-IV objective function, which causes many local minima with widely

varying parameter estimates and model-implied economic predictions. With a large number

of simulation draws we obtain tightly clustered model estimates and economic predictions.

Second, inaccurate numerical integration gives biased parameter estimates and economic im-

plications. With a relatively low number of simulation draws we find that the magnitude of

own-price elasticities is systematically estimated to be too high. In a simulation of a merger

between GM and Chrysler this leads to a substantial underestimation of the merger’s e↵ect

on prices. The estimated demand model therefore systematically and erroneously predicts

the merger to cause less harm to consumers than when a large number of draws is used. Our

findings should therefore also be relevant for competition policy practitioners.

Broadly, our results contribute to the body of literature that shows how accurate compu-

tational methods can be crucial for obtaining reliable results from the estimation of nonlinear

econometric models. Such models pose two major di�culties. First, a highly nonlinear objec-

tive function can produce many candidate extreme points. Depending on the identification

approach, the econometrician must identify either the global maximum or minimum. Sec-

ond, it can be numerically challenging to compute the estimator’s objective function or the

economic model’s moments with su�cient accuracy to reliably pin down the sought after co-

e�cients. McCullough and Vinod (2003) illustrate the importance of carefully verifying the

candidate extreme points from a nonlinear solver. Petrosky-Nadeau and Zhang (2017) show

how inaccurate computation of the Diamond-Mortensen-Pissarides model, the workhorse ap-

proach for general equilibrium labor market models, produces biased moments. The results

of KM suggest that both issues are relevant for the estimation of BLP models, while we show

that the number and spread of the estimator’s minima fall into an increasingly narrowing

interval when the objective function is computed accurately.

In this sense, our findings are related to weak identification in nonlinear GMM-IV esti-

mation as described in Stock, Wright, and Yogo (2002). Here, the weak identification is not

caused by weak instruments, however, but by random simulation error in the estimates of

the structural error terms, which introduces many local minima in the estimator’s GMM-IV

objective function. Moreover, our findings are in line with the results from Berry, Linton,

and Pakes (2004), who derive the properties of the BLP nested fixed point estimator when

2The replication files of KM are exemplary.
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the number of products becomes large. Simulation error in the estimates is bounded if and

only if the number of simulation draws grows proportionally with the square of the number

of products. The impact of simulation error is therefore more pronounced in samples with

many products, which applies to the U.S. automobile data with markets having between 72

and 150 products. For the U.S. automobile data, we find the estimator no longer fails to

converge to a local minimum for any of the random starting guesses if we use at least 5,000

Monte Carlo simulation draws to compute the aggregate market share inversion. With our

least precise numerical integration approach, which as in KM uses 50 Monte Carlo draws,

we obtain convergence to a local minimum in less than 63 percent of the estimations and

a coe�cient of variation among the objective values of the identified minima of more than

30 percent. In contrast, with our most accurate integration approach, which uses 10,000

modified latin hypercube sampling draws (MLHS draws, Hess et al. (2006)) we obtain con-

vergence to a local minimum for 100 percent of the estimations and a coe�cient of variation

of less than 3 percent. This tight clustering of the identified minima also carries over to

the parameter estimates and the model-implied economic predictions. To illustrate, with

50 Monte Carlo simulation draws the 95 percent confidence interval for the average own-

price elasticity across all observations in the automobile data ranges from roughly -24 to -3.

When 10,000 MLHS draws are used instead, the confidence interval tightens to the range

from roughly -9 to -8. Our results are based on a total of 40,000 BLP model estimations,

where we use two numerical integration techniques, standard Monte Carlo and MLHS draws.

For each of these approaches we consider eight di↵erent numbers of simulation draws that

range from 50 to 10,000. For each number of draws, 50 independently sampled sets are

generated and for each of these sets the BLP model is estimated 50 times using the same

specification and random starting guesses as in KM.

The importance of simulation error has largely been abstracted from in the existing

literature. Dubé, Fox, and Su (2012) also identify the contraction mapping as the major

source of numerical instabilities, but focus on the convergence threshold of the contraction

that is set by the researcher and explicitly shut down the e↵ect of simulation error.3 A loose

threshold speeds up the estimation, but also introduces approximation error in the objective

function. In qualitative terms, we can confirm their findings, but in our setting with real

world data we find the impact of the convergence threshold to be of second order (see the

3See p. 2263 in Appendix A of Dubé, Fox, and Su (2012): “. . . Because our focus is not on numerical
integration error, we use the same sample of 1000 draws to compute the market shares in the data-generation
and estimation phases.”
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bottom panel of Table 5).4 Reynaert and Verboven (2014) show that approximately optimal

instruments can substantially reduce weak identification in BLP model estimation that is

caused by weak instruments. Again, the impact of simulation error is shut down, because

highly accurate numerical integration approaches are used throughout the simulations and

only markets with at most 20 products are considered.

A brute-force reduction of the approximation errors by increasing the number of sim-

ulation draws can be computationally costly up to a point where it seems infeasible to

implement. We therefore also discuss how to increase the approximation accuracy in a com-

putationally e�cient way and provide an implementations in the form of an R package and

Matlab code that o↵er substantial speedups over KM’s Matlab implementation of the nested

fixed point estimator.

The remainder of the paper is organized as follows. Section 2 briefly reviews the BLP

model and its identification using the nested fixed point algorithm. It also theoretically shows

how simulation error propagates in the GMM-IV sample moment and objective function

using results from Berry, Linton, and Pakes (2004). Section 3 presents the setup for our

large-scale study of the BLP estimator using the U.S. automobile data. We trace out the

e↵ects of simulation error in our 40,000 BLP model estimations in Section 4 and discuss the

trade-o↵ between the computational burden and the accuracy of the estimation and suggest

ways to improve the computational e�ciency in Section 5. There we also benchmark our R

and Matlab programs and show that they are several times faster than the routine in KM’s

replication files. Finally, we conclude.

2 The BLP model

This section briefly presents the BLP model and its estimation using the nested fixed point

algorithm. We also discuss the propagation of the simulation error in the estimator’s moment

function.

2.1 Setup and model-implied market shares

Each consumer in a market for di↵erentiated products faces the discrete choice between

the alternatives labeled by j = 0, ..., J , where j = 0 indicates the outside good. Typically,

we model several markets jointly. For notational simplicity, we suppress an index for the

4We consider convergence thresholds of 10�16, 10�9 and 10�4. Only the latter, extremely lax criterion,
yields a noticeably wider spread in the model estimates.
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market on all relevant variables. Since the level of utility is not separately identified, the

indirect utility each consumer attaches to the outside option is normalized to zero. Consumer

i’s indirect utility from purchasing product j is specified as a function of its price p
j

, K

observed product characteristics collected in the vector x
j

, and the valuation of unobserved

characteristics ⇠
j

. The average utility over consumers is specified as

�
j

= �
j

(⇠
j

) = x
j

� � ↵p
j

+ ⇠
j

. (1)

The BLP model also allows for preference heterogeneity over the K characteristics in the

population. It is captured by the vector ⌫
i

= [⌫
i1

, . . . , ⌫
iK

]. For the model’s exposition and

to o↵er a meaningful comparison with the results in Knittel and Metaxoglou (2014), we

assume that the K dimensions of ⌫
i

are independently distributed. This assumption can be

relaxed and preference correlations between the K characteristics can be modeled to achieve

more flexible substitution patterns. In our simpler case, the only parameters that capture

heterogeneity are the standard deviations of the preference parameters ✓ = [�
1

, . . . , �
K

].5

The consumer-specific deviation from mean utility is defined as

µ
ij

= µ
j

(✓, ⌫
i

) = p
j

�
p

⌫
ip

+
KX

k=1

x
jk

⌫
ik

�
k

(2)

The overall utility also includes consumer-product specific utility residuals "
ij

and can

be written as

u
ij

= �
j

+ µ
ij

+ "
ij

. (3)

Making the typical assumption that the "
ij

are independent and follow a Type I extreme value

distribution gives the closed form expressions for the consumer-specific choice probabilities

for product j

Pr
j

(�, ✓, ⌫
i

) =
exp(�

j

+ µ
j

(✓, ⌫
i

))

1 +
P

J

`=1

exp(�
`

+ µ
`

(✓, ⌫
i

))
, (4)

where � = [�
1

, . . . , �
J

]. The model-implied aggregate market share function integrates over

the consumer-specific choice probabilities, where we let F (⌫) denote the population distri-

bution of consumer heterogeneity.

s⇤
j

(�, ✓) =

Z
Pr

j

(�, ✓, ⌫)dF (⌫) =

Z
exp(�

j

+ µ
j

(✓, ⌫))

1 +
P

J

`=1

exp(�
`

+ µ
`

(✓, ⌫))
dF (⌫) (5)

5Note that in practice, often one or more of the preference parameters are restricted to be constant across
the population which can be implemented in this notation by restricting the respective �k parameters to
zero.
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This integral does not have an analytic solution, but can be approximated numerically. We

have to deal with the fact that the population distribution of consumer preferences is not

directly observed by the econometrician.6 We therefore have to assume a joint distribution of

preferences over the K characteristics. A common assumption is a joint normal distribution.

The most straightforward algorithm for this approximation is Monte Carlo simulation. We

draw a sample ⌫̃ = [⌫̃
1

, . . . , ⌫̃
R

] of size R from the joint distribution of ⌫. The approximated

version of s⇤
j

(�, ✓) is

s
j

(�, ✓, ⌫̃) =
1

R

RX

r=1

Pr
j

(�, ✓, ⌫̃
r

) =
1

R

RX

r=1

exp(�
j

+ µ
j

(✓, ⌫̃
r

))

1 +
P

J

`=1

exp(�
`

+ µ
`

(✓, ⌫̃
r

))
. (6)

2.2 Instrumental variables and identification

The unobserved characteristics or structural error terms ⇠
j

are vertical product attributes.

Consumer utility for product j is increasing in ⇠
j

, so that consumers always prefer more of

it. Contrary to the econometrician, both firms and consumers observe all ⇠ = [⇠
1

, . . . , ⇠
J

],

which yields positive correlations between the error term and price. We obtain consistent

estimates of the preference parameters by imposing a standard GMM-IV moment restriction.

Let z
j

denote a row vector of L � K relevant and valid instrumental variables. The moment

restriction is

E [G(✓)] = E

"
1

J

JX

j=1

z
j

⇠
j

(✓)

#
= 0. (7)

In the typical case where we model several markets jointly, we average over all available

products in all markets. Note that the ⇠
j

are by definition unobserved in the data. Here,

⇠
j

(✓) denotes the implied values as detailed in the next section.

Cost shifters that vary at the product level would be ideal candidates for the excluded

instruments. The required data, however, is often not available. To construct suitable

instruments we make the assumption that the ⇠’s are mean independent of the observed

product characteristics.

E (⇠|x) = 0 (8)

If this assumption holds, any function of the observed product characteristics qualifies as a

potentially valid instrument for price. Such functions also give relevant instruments, because

the observed characteristics enter each product’s equilibrium pricing function. BLP use this

6Depending on data availability, consumer heterogeneity can be partially directly observed by using
(relevant) consumer demographics. This introduces an additional term that enters utility additively separably
and that interacts the observable product attributes and consumer demographics.
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insight to derive a set of instruments that can be viewed as a first-order approximation

of a pricing game played between firms: for each product j sold by firm f the observable

characteristics of all products sold by the same firm are summed over and the observable

characteristics of all products sold by rival firms are summed over, z
j,own

=
P

k 6=j,k2Ff
x
k

,

z
j,other

=
P

k,k/2Ff
x
k

. This gives 2K
1

� K
2

+ 1 excluded instruments to identify the price

coe�cient ↵, and the standard deviations of the random coe�cients ✓.

Let ✓⇤ denote the true population preference parameters. Given a suitable weighting

matrix W , we obtain a consistent and, as Berry, Linton, and Pakes (2004) prove, asymptot-

ically normally distributed estimator of ✓⇤ by minimizing the GMM-IV objective function,

which is a norm of the sample moment 1

J

P
j

z
j

⇠
j

(✓).7

b✓
2

= argmin
✓

J (✓) = argmin
✓

⇠(✓)0zWz0⇠(✓) (9)

Here, ⇠(✓) and z are the vertically stacked market-specific structural error terms and instru-

ment matrices, respectively.

2.3 The fixed-point algorithm for obtaining ⇠(✓)

The objective function (9) involves the vector of unobserved product characteristics ⇠(✓)

which need to be evaluated numerically for a given set of parameters. To simplify the

notation in this section, we abstract from any sampling errors and assume throughout that

market shares are observed without error.

For each candidate vector of the nonlinearly entering preference parameters ✓, the BLP

model chooses the values of the product-specific mean utility � = [�
1

, . . . , �
J

] such that for

each product j, the model-implied approximated market share matches the observed share

in the data S

j

.8

S

j

= s
j

(�, ✓, ⌫̃) for all j (10)

We cannot solve these equations for � analytically but have to resort to numerical methods.

BLP prove the existence of a fixed point that gives the unique solution �
match

to this system

of equations for any candidate vector ✓ and set of simulation draws ⌫̃. We iterate over the

equation

�
j,iter+1

= �
j,iter

+ log(S
j

)� log(s
j

(�
iter

, ⌫̃, ✓)) (11)

7Without loss of generality, we assume that the weighting matrix is homoscedastic, W = (z0z)�1.
8The magnitude of the relative approximation error, |(Sj � sj)/Sj |, is bounded from above by the inner

convergence threshold, �inner.
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until the distance between successive iterates falls below the chosen convergence threshold,

|�
j,iter+1

��
j,iter

|  �
inner

for all j. If this inequality holds, the current update for the vector of

mean utilities is accepted as the solution �
match

(✓, ⌫̃) to (10). We obtain the corresponding

vector of structural error terms ⇠
match

(✓, ⌫̃) as the residuals of a two-stage least squares

regression of �
match

(✓, ⌫̃) on the observed product characteristics. This step also delivers the

estimates of the linearly entering parameters ↵ and �.

�
j,match

(✓, ⌫̃) = x
j

�̂ � ↵̂p
j

+ ⇠
j,match

(✓, ⌫̃) (12)

2.4 Simulation errors and their propagation

At each iteration of the contraction mapping, (11), the model-implied aggregate market

shares must be computed using (6). Simulation error is introduced because of di↵erences

between the consumer population and the simulated sample of consumer preferences using

R simulation draws.9

In order to define the simulation errors similar to Berry, Linton, and Pakes (2004), let

�⇤
match

(✓) and ⇠⇤
match

(✓) denote the solutions to S

j

= s⇤
j

(�, ✓) in the absence of simulation

errors in the market shares. Simulation error is defined as

e(✓, ⌫̃) ⌘ s⇤
�
�⇤
match

(✓), ✓
�
� s

�
�
match

(✓, ⌫̃), ✓, ⌫̃
�
. (13)

By construction, the simulation errors would vanish for any candidate parameter vector

✓ if we were able to solve the market share integral (5) exactly. Berry, Linton, and Pakes

(2004), show that ⇠
match

(✓, ⌫̃) can approximately be written as

⇠
match

(✓, ⌫̃) ⇡ ⇠⇤
match

(✓)| {z }
exact inversion

�

"
@s⇤(�(⇠), ✓⇤)

@⇠0

����
⇠

⇤

#�1

e(✓, ⌫̃)

| {z }
e↵ect of simulation error

, (14)

where ✓⇤ and ⇠⇤ denote the true population values of ✓ and ⇠, respectively. The expression

[@s⇤/@⇠0] is the J ⇥ J matrix of market share derivatives with respect to the unobservable

product characteristics.

The first term on the right-hand side is the estimate of the structural errors that we would

obtain if we could match the population distribution of preference heterogeneity exactly in

9We ignore an additional potential error here. We impose that consumer preference heterogeneity follows
a normal distribution. The true preference distribution could be non-normal, which would potentially lead
to biased parameter estimates.
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the numerical integration of the aggregate shares. We only use a sample of R simulation

draws, however, which causes deviations of the model-implied shares from their observed

sample counterparts at ⇠⇤. How these deviations a↵ect our computations of ⇠
match

depends

on how sensitive ⇠
match

is with respect to changes in the entries of the model-implied aggregate

market share vector s⇤. This sensitivity is measured by the inverse of the matrix [@s⇤/@⇠0].

The smaller the derivatives, the larger is the distortion of ⇠
match

that is caused by simulation

error. Thus, the inversion of aggregate market shares magnifies simulation error in the

estimates of the structural error term.

By distorting the estimates of ⇠, simulation error propagates in the sample moments and

thereby in the GMM-IV objective function. Plugging (14) into the sample moment gives

G(✓, ⌫̃) ⇡
1

J

JX

j=1

z
j

0

@⇠⇤
match

(✓)�

"
@s⇤(�(⇠), ✓⇤)

@⇠0

����
⇠

⇤

#�1

e(✓, ⌫̃)

1

A , (15)

which stresses that the computed sample moment depends explicitly on the simulation error

that is caused by the specific set of draws ⌫̃. There is an analogy to the definition of weak

identification in Stock, Wright, and Yogo (2002) for nonlinear GMM estimation. Given that

eR is random and propagates into the GMM-IV objective function, the shape and location

of the objective function (9), are a↵ected. There can be several values for ✓ 6= ✓⇤ for which

the objective function attains a local minimum. This explains how many local minima

with widely varying parameter estimates and economic implications are found with a crude

numerical integration approach.

Berry, Linton, and Pakes (2004) also show that the extent of the magnification depends

on the number of products in the market. In equilibrium, as more and more products enter a

market, it must be the case that product-level market shares fall. This is because in the BLP

model, each product is substitutable with every other product to some extent. Specifically,

it is assumed that all shares move inversely proportional with J (Condition S/equation (20)

in Berry, Linton, and Pakes (2004)). The derivatives of the shares with respect to ⇠ are

proportional to market shares and therefore also decline with J . As simulation errors are

scaled by the inverse of [@s⇤/@⇠0], the magnification of simulation errors is greater in samples

with many products. To bound the simulation errors as the number of products becomes

large, the number of simulation draws must grow proportionally with the square of the

number of products in the market.
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3 Computational experiments: Setup

We study how numerical integration accuracy a↵ects the behavior and outcomes of the BLP

nested fixed point estimation algorithm using the original automobile market data from

BLP. This data set covers 20 years of annually aggregated car model-level sales for the

United States starting in 1971.10 We think this choice presents two advantages. First, this is

a real world data set where the number of products ranges from 72 to 150 and that is based

on a large sample of individual consumer purchases. Sampling error, therefore, is likely to

be negligible, while simulation error should play a substantial role in this setting. Second,

the same data set has been used by KM to carefully document several numerical instabili-

ties in the BLP estimation algorithm. The study is exemplary in terms of its replicability

and transparency and has motivated researchers to more carefully implement and report

the outcomes of their BLP model estimations (e.g. Goldberg and Hellerstein (2013)). We

therefore base our large-scale study of the BLP estimation algorithm on KM’s replication

files to demonstrate that the reported numerical instabilities are tackled once the numeri-

cal integration of the model-implied aggregate shares is performed accurately. Specifically,

we estimate exactly the same specification using the same set of instruments and random

starting guesses for ✓.

3.1 Model specification

In the automobile market application, we follow the literature and interpret the yearly data

as separate markets t = 1, . . . , 20. The indirect utility of consumer i in year t for car j is

specified as

u
ijt

= �
i0

+ hpwt
jt

�
i1

+ space
jt

�
2

+ aircon
jt

�
i3

+mpg
jt

�
i4

� ↵
i

price
jt

+ ⇠
jt

+ "
ijt

, (16)

where hpwt is the horsepower-weight ratio, space is the length times the width of the car,

aircon is a dummy indicating whether the car has air conditioning built in andmpg measures

the car’s miles per gallon. Except for space, all observable characteristics, including price and

the constant term, have a random coe�cient. The specification therefore involves 5 random

coe�cients in total. We assume that the random coe�cients are distributed normally and

independently. Thus, ↵
i

= ↵ + �
p

⌫
i,p

and �
i,k

= �
k

+ �
k

⌫
i,k

with ⌫
i,k

, ⌫
i,p

⇠ N(0, 1) for

k = 1, . . . , K
2

= 5.

10For a detailed description of the data set, see Berry, Levinsohn, and Pakes (1995).
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3.2 Instruments

We use the instruments from the Knittel and Metaxoglou (2014) replication files. These are

the standard characteristics-based or BLP-type instruments. Using all five non-price product

characteristics including the constant, these instruments sum over the characteristics of all

other cars produced by the same firm, and sum over the characteristics of all cars produced

by rival firms. We therefore have 10 instruments for price and the 5 nonlinearly entering

parameters. Given that the literature on approximately optimal instruments shows that these

standard characteristics-based instruments can be weak and thereby yield weak identification

of the random coe�cients, it is important to show that for specification (16) this is not the

case so that we are dealing with a sensible model.

We simply run the first-stage regression of price on the instruments for two cases. First,

we only explain the variation in price using the excluded (BLP-type) instruments. This re-

gression gives an F-statistic of 43.9. Second, we use the full instrumental variable matrix that

also contains the observed non-price characteristics, which given their assumed exogeneity

instrument for themselves. Not surprisingly, this gives a higher F-statistic, namely roughly

248. To assess whether the observed characteristics drive out the excluded instruments, we

compute the F-statistic for the null that only the coe�cients of the excluded instruments are

zero. This F-statistic has a value of 43.7, almost unchanged from the first-stage regression

without the observed characteristics. In both cases, we comfortably pass the rule of thumb

that the F-statistic should be greater than 10. The excluded instruments also comfortably

pass the critical values reported in table 1 of Stock, Wright, and Yogo (2002). We conclude

that the example model is well identified and we don’t have to worry about weak instruments.

3.3 Simulation of the market shares

Di↵erent algorithms for the approximation of the integral in the market share equation (5)

have been proposed in the literature. Since this paper focuses on the e↵ect of approximation

errors rather than on ways to avoid them, we restrict ourselves to two popular simulation

methods: the standard Monte Carlo approach and modified latin hypercube sampling draws

(MLHS draws). We come back to alternative approximation methods in Section 5.3. Hess,

Train, and Polak (2006) find that in finite samples MLHS draws perform roughly on par with

Halton draws. For our study, MLHS draws o↵er the advantage that it is straightforward to

obtain measures of how the number of simulation draws a↵ects the spread of estimation

outcomes. We can simply compute the variance of some estimation outcome for a given
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number of simulation draws. With standard Halton draws or any quadrature method this is

no longer the case, because for these approaches the simulation draws or nodes are based on

deterministic number sequences. By construction, therefore, for a given number of draws or

nodes there is no variation across di↵erent estimations. To obtain a measure of simulation

error in the estimation outcomes, we would have to compute error bounds for these methods,

which are model-specific and cumbersome to implement.

We use 8 di↵erent numbers of draws for both simulation approaches that range from 50

to 10,000.11 To exclude the possibility that our findings are due to any specific set of draws,

we generate 50 independently sampled sets of ⌫ for each of the 8 di↵erent numbers of draws.

Therefore, with the 50 starting guesses for ✓ from KM, each number of draws requires us to

estimate specification (16) 2,500 times. With 8 di↵erent numbers of simulation draws and 2

simulation approaches, we estimate the BLP model 40,000 times.

3.4 Optimization algorithms and inner convergence threshold

An important part of the Knittel-Metaxoglou critique is that the choice of optimization

algorithm can have a substantial e↵ect on the estimation outcomes. Similarly, Dubé, Fox, and

Su (2012) caution that a loose inner convergence threshold can produce many local minima

with widely varying estimates. We investigate both of these aspects in our setting and with

an accurate numerical integration approach we find the choice of optimization algorithm to

be irrelevant (see the top panel of Table 5) and the impact of the inner convergence threshold

to be of second order (see the bottom panel of Table 5). We therefore base all of our 40,000

estimations in the main part of our study on a trust region optimizer with an analytical

gradient12 and on a stringent inner convergence threshold of 10�16.

3.5 Benchmark comparison and additional computational details

We deviate from the implementation of the nested fixed point algorithm in some aspects from

KM. The changes that we implement make the algorithm more robust and enforce a uniform

convergence threshold for the market share inversion throughout. Specifically, KM follow the

original code of Nevo (2000), which assigns very high but computable values to the objective

function and analytical gradient if a specific parameter value results in numerical overflow.

This issue can be easily avoided by rescaling price. We simply divide price by its standard

11These numbers are 50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000.
12Specifically, we use Matlab’s fminunc optimizer algorithm. This corresponds to KM’s DER1-QN1 opti-

mizer.
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Table 1: Estimated Random Coe�cients Using KM’s 50 Monte Carlo Draws

Min 1 Min 2 Min 3 Min 4 Min 5
price 0.328⇤⇤ 0.182 0.162 0.107⇤⇤ 0.134⇤⇤

constant 7.480⇤⇤ 2.720⇤⇤ 5.232⇤⇤ 2.001 1.598⇤⇤

hpwt 2.565 1.063 0.165 5.781⇤⇤ 1.481
aircon 8.800⇤⇤ 0.484 3.629 0.425 4.231⇤⇤

mpg 0.098 0.687 0.134 1.767⇤⇤ 1.163⇤⇤

J (b✓
2

) 207.7 215.1 216.0 224.6 226.9
⌘
jj

-10.53 -7.782 -5.787 -4.606 -5.387
⌘ -1.007 -1.374 -0.946 -0.945 -1.263
Wald-statistic 23.26 87.49 72.69 112.4 93.74

Note: ⇤ and ⇤⇤ indicate statistical significance at the 95 and 99 percent confidence levels, respectively. Only
the estimated random coe�cients, ✓, are shown. All inputs to the estimation, including the 50 simulated
draws for consumer preference heterogeneity, ⌫KM , are identical to those used by KM. We compute HAC
standard errors. ⌘jj is the average own-price elasticity and ⌘ is the aggregate demand elasticity averaged
over all 20 markets. The null hypothesis of the Wald test is ✓ = 0.

deviation. With this rescaling we have never had to contend with overflow problems in our

40,000 BLP model estimations. Moreover, in KM’s “loose” implementation of the estimation

algorithm, the convergence tolerance in the nested fixed point is dynamically adjusted. When

successive iterates of (11) are close to each other, the convergence threshold is set to 10�9.

If this is not the case, the threshold is set at 10�6. This dynamic adjustment was originally

implemented by Nevo (2000) to reduce the computational burden of the estimation. Given

that Dubé, Fox, and Su (2012) show that a loose convergence threshold is an additional

source of numerical error and given that computational power has increased dramatically

over the last two decades, we enforce a uniform convergence threshold of 10�16 throughout.

Using the same set of 50 Monte Carlo draws as KM, we demonstrate that our changes

do not fundamentally impact the Knittel-Metaxoglou critique at this level of numerical

integration accuracy. Table 1 presents the results of estimating specification (16) for 50

di↵erent starting values.

We find that 44 of the 50 random starting guesses for ✓ yield a local minimum. Rounding

the objective function values of these minima to two digits, we obtain 5 minima that range

between 207.72 and 226.94. This is a more narrow range than that reported by KM. This

indicates that at least some of the lack of robustness in their estimation results could stem

from scaling issues, which we avoid.13 Overall however, the Knittel-Metaxoglou critique is

13KM’s high cuto↵ of 30 for the Euclidean norm of the gradient is likely to contribute to a wider range of
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broadly rea�rmed. For each random coe�cient, the ratio of its largest to smallest point

estimate across the 50 starting guesses is at least 3 (price) and reaches up to 35 (hpwt).

The model-implied average own-price elasticity and the aggregate demand elasticity vary by

factors of roughly 2.3 and 1.4, respectively. Moreover, the statistical significance of individual

random coe�cients changes substantially across minima. In fact, for each coe�cient, it

is possible to select a minimum where that coe�cient is either statistically significant or

insignificant at the 95 percent confidence interval. Finally, the Wald statistic we obtain by

testing the estimated BLP model against the simple logit model also ranges widely from 23

to 112.

3.6 Verifying Candidate Minima of the Objective Function

We use two criteria to assess whether the output of the optimization algorithm delivers a

minimum. First, it must be the case that all the eigenvalues of the Hessian at the estimated

coe�cient vector, b✓
2

, are strictly positive. Second, the gradient must be su�ciently close

to zero. The definition of su�ciently close to zero is arbitrary to some extent. We adopt a

cuto↵ of 0.1 for the Euclidean norm of the gradient at b✓
2

. Our qualitative results are robust

to either tightening or relaxing this cuto↵. This cuto↵ is substantially more stringent than

the cuto↵ of 30 that is adopted by KM.

4 Main results

We present the outcomes of the 40,000 BLP model estimations in two parts. First, we demon-

strate how simulation error propagates in the GMM-IV sample moments and thereby in the

objective function of the estimator. This propagation explains the numerical instabilities

documented by KM. Moreover, simulation error can be reduced substantially by increasing

the number of simulation draws and thereby raising the accuracy of numerical integration.

Second, we document how the mean and spread of the estimation outcomes and the

corresponding economic predictions change with the number of simulation draws. Beyond

500 draws, the spread of the estimation outcomes is falling monotonically in the number of

simulation draws for both integration approaches. The estimated parameters and economic

implications fall into increasingly narrowing intervals. With regards to the mean of the

estimation outcomes, our findings show that simulation error biases the estimation outcomes

outcomes, too.
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Figure 1: Empirical Distribution of b⇠ for Selected Products
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Note: Both panels show the empirical relative frequency plots for the estimated structural error term across
2,500 estimations of the BLP model for a given number of simulation draws. The 2,500 estimations are based
on 50 independently sampled sets of preference heterogeneity for a given number of draws. For each of these
50 sets, we estimate the BLP model using 50 random starting guesses. With 50 MC draws, only 1,562 of the
2,500 estimation runs converge to a local minimum. For the 10,000 MLHS draws, all estimations converge.
Estimations that fail to converge are not included in the plots.

in the sample of U.S. automobile market data. Thus, as the number of simulation draws

changes, so do the means of the estimation outcomes.

4.1 Simulation error in the structural error term

Simulation error propagates in the estimates of the structural error term. Figure 1 shows how

the number of simulation draws, which is inversely related to the magnitude of simulation

error, a↵ects the estimates of the structural error term. Both panels plot the empirical

distributions of the estimated unobservable characteristic for the products with the smallest

and largest market shares in the sample. These distributions are based on our least accurate

numerical integration approach, namely 50 Monte Carlo draws (blue), and our most accurate

approach, 10,000 MLHS draws (red). For each of these integration approaches the model is

estimated 2,500 times and each estimation that converges to a local minimum gives us one

estimate of the structural error.

The di↵erences between the distributions are remarkable. Using only 50 Monte Carlo
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draws, the variances of the estimated structural errors are 0.843 and 0.952 for the products

with the smallest and greatest market shares in the sample, respectively. If we use 10,000

MLHS draws, instead, we obtain corresponding variances of only 0.001 and 0.004. In terms of

99 percent confidence intervals, with 50 Monte Carlo draws, the estimate of the unobservable

attribute for the products with the smallest and greatest shares are, respectively, the ranges

from -9.5 to -4.8 and -0.6 to 5.8. Using our most accurate numerical integration approach

gives the corresponding confidence intervals of -7.1 to -6.9 and 2.6 to 3.0. Adopting a

crude integration approach, therefore, produces simulation error that easily overwhelms the

estimates of the error terms. This holds across the sample. We obtain qualitatively identical

figures for the products with the mean and median market shares, for example. Thus,

simulation error randomly perturbs the estimates of each product’s unobserved characteristic

and thereby it a↵ects the shape of the GMM-IV objective function.

4.2 The level of the simulated objective function

The structural error term is a critical ingredient of the GMM-IV objective function, so

the simulation errors in the former directly a↵ect the latter. For a first indication of the

magnitude of the problem, we first fix the nonlinearly entering parameters at our global

minimum candidate, e✓
2

= (1.52, 5.84, 3.39, 0.41, 0.10)0. It is not essential that we pick this

specific point. We would obtain qualitatively identical results at other candidate values of

✓. For each set, we therefore evaluate the objective function at exactly the same point and

only vary the set of simulation draws. Without simulation error, there would be no variation

across the objective function values that we obtain. To fix notation, let J (⇠(e✓
2

), ⌫m

i

) denote

the objective function value that we obtain at e✓
2

using the particular set of simulation draws

⌫m

i

, where we use simulation approach m = {MC,MLHS} and generate i = 1, . . . , 1000

independent samples. We vary the number of draws between 50 and 100,000. Table 2

presents the results.

The spread in objective function values is striking. With only 50 Monte Carlo draws, we

see a range of roughly 2,500 for the objective function values. As we hold everything else

constant, the di↵erent random samples of ⌫ are the sole driver of this e↵ect. To assess how

the variation in objective values changes with the number of simulation draws across the

independently drawn samples, we report the coe�cient of variation. For only 50 draws, we

obtain coe�cients of roughly 0.5 and 0.34 for Monte Carlo and MLHS integration, respec-

tively. Given that these figures are based on evaluating the objective function at exactly

the same point, this variation is indeed substantial. As we raise the number of simulation
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Table 2: Objective Function Values Obtained Using Monte Carlo and MLHS Draws

Monte Carlo draws MLHS draws
# draws J �J �J /J range of J J �J �J /J range of J
50 726.7 360.5 .496 2,471 381.6 130.8 .343 1,002
500 286.9 70.6 .246 455.3 251.9 37.9 .151 235.7
5,000 242.6 22.3 .092 141 238.1 11.1 .047 72.3
100,000 236.9 4.8 .020 30.8 236.8 2.2 .009 14.8

Note: J and �
J

denote the mean and standard deviation of the objective function values for each number
of simulation draws.

draws, however, we can observe a large drop in the coe�cients of variation. For 10,000

draws the Monte Carlo and MLHS integration approaches deliver coe�cients of around .07

and .03. Raising the number of draws further to 100,000 pushes the coe�cient of variation

for the MLHS approach below 1 percent, while its counterpart for Monte Carlo integration

is 2 percent. Finally, we can see that the mean of the objective function tends towards the

same value of roughly 237 for both simulation methods.

4.3 The shape of the simulated objective function

As the GMM estimator minimizes the objective function, its level is less important for

parameter estimation than its shape. To provide an impression of the relevance of the

simulation errors, we trace the objective function in one dimension. We take the parameter

estimate from our global minimum candidate, which is based on numerical integration using

10,000 MLHS draws e✓
2

. We hold all � values constant except for �
price

. Figure 2 plots

the shape of the objective function along the �
price

-dimension for several sets of simulation

draws. The red dashed, blue dashed and solid black lines are respectively based on three

independently generated samples of 50, 500 and 5,000 MLHS draws. With 50 draws, the

shape of the objective function changes markedly across the three sets. One of the three sets

attains a local minimum at zero, which implies no preference heterogeneity along the price

dimension. This outcome is strongly rejected by our full set of estimations. A second set

produces a shape that yields two minima along the price dimension. The third set has only

one local minimum, but gives a biased estimate of �
price

compared with our global minimum

candidate. For 500 MLHS draws we can already see that the shape of the objective function

stabilizes. There is only one local minimum for all sets, which is not located at zero. There
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Figure 2: Shape of the Objective Function at the Global Minimum Candidate
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Note: The objective function is plotted along its �price dimension for 9 sets of Monte Carlo simulation draws:
3 sets using 50 draws (red dashed), 3 sets using 500 draws (blue dotted), and 3 sets using 5,000 draws (black
solid). To ensure that all objective functions share the same value at �price = 0, we subtract the objective
value at that point from each of the 9 objective function plots.

is, however, visible variation in the location of the minima. For 5,000 MLHS draws the three

sets generate objective functions that appear to be congruent. The shape of the objective

is stable, the minimum at zero is ruled out and the local minima across the three sets are

located very close to our global minimum candidate.

4.4 Estimation results

The results presented so far show that simulation error randomly disturbs the point estimates

of the structural error terms. These error terms directly enter the sample moment and

thereby a↵ect the level and shape of the GMM-IV objective function. Substantial simulation

error can therefore produce ill-behaved objective functions with many local minima and

widely ranging parameter estimates. We now present three sets of estimation outcomes.
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Table 3: Range and Spread of the Identified Minima

Monte Carlo draws MLHS draws
# draws J �J /J range of J # Minima J �J /J range of J # Minima
50 198.6 .323 283 126 179.6 .361 254 149
100 195.5 .311 265 129 183.9 .302 286 136
200 199.6 .298 278 128 188.0 .240 222 132
500 209.3 .201 222 123 204.4 .154 157 111
1,000 211.5 .146 166 99 207.5 .123 148 102
2,000 214.7 .135 159 93 221.7 .078 87 65
5,000 225.1 .090 101 80 229.3 .038 53 38
10,000 230.1 .065 82 57 232.1 .029 40 32

Note: MLHS stands for modified latin hypercube sampling. J and �
J

denote the mean and standard
deviation of the objective function values for each number of simulation draws. To count the number of
unique minima we take all identified minima from the 2,500 estimations that are run for each number of
draws and round the objective function values to whole numbers.

First, we trace out how an increasing number of simulation draws a↵ects the behavior and

robustness of the BLP estimator. Second, we turn to the point estimates of the 5 random

coe�cients and their statistical significance. Third, we examine the model-implied economic

predictions by computing the own-price elasticities at the product level and the predicted

price, profit, and consumer welfare e↵ects of a counterfactual merger between Chrysler and

GM.

4.4.1 Behavior and robustness of the nested fixed point estimator

We characterize the behavior of the estimator by examining the range and number of the

identified minima. Table 3 shows that an increase in the number of simulation draws tight-

ens the range and reduces the number of the identified local minima for both integration

approaches. The pattern can be succinctly summarized using the coe�cient of variation. In-

creasing the number of draws from 50 to 10,000 reduces the coe�cient of variation for Monte

Carlo integration from roughly 32 percent to 6.5 percent. For MLHS draws, the decrease

is more substantial from 36.1 percent to 2.9 percent. Concomitantly, the number of unique

minima is reduced by a factor exceeding 2 and close to 5 for Monte Carlo and MLHS draws,

respectively. The 32 unique minima that are identified using our most accurate numerical

integration approach are obtained across 50 independent samples of preference draws. Thus,

there is less than one minimum per set of draws. Moreover, as we compute the model ag-
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Table 4: Behavior of the Nested Fixed Point Estimator

Monte Carlo draws MLHS draws
fraction objective inner fraction objective inner

# draws minima calls iterations minima calls iterations
50 0.625 115.7 40.44 0.545 119.8 43.73
100 0.752 104.4 37.55 0.586 102.6 39.17
200 0.768 89.52 34.56 0.712 97.07 36.73
500 0.821 79.03 33.00 0.842 84.78 33.49
1,000 0.874 73.75 32.52 0.949 76.06 33.30
2,000 0.925 68.62 31.71 0.993 66.14 31.67
5,000 0.999 61.11 30.65 0.999 60.21 30.21
10,000 1.000 58.34 29.84 1.000 56.33 29.72

Note: MLHS stands for modified latin hypercube sampling. All statistics are computed as averages across
all estimations for a given number of draws that converge to a local minimum. The number of objective calls
is the number of GMM-IV objective function evaluations the optimization algorithm requires to converge to
a candidate minimum.

gregate shares more accurately, the reduced number of minima fall into a narrowing range

of values.

As a measure of the estimator’s robustness we use the fraction of starting guesses that

yield a local minimum. With 50 simulation draws, we see in Table 4 that for both simulation

approaches, a large fraction of estimations fails to converge to a local minimum. For Monte

Carlo simulation, this fraction is roughly 40 percent, while for MLHS draws, almost 45

percent of the attempts fail to converge to a local minimum. With 500 simulation draws, this

fraction of failed estimation runs drops below 20 percent for both approaches and beyond

5,000 Monte Carlo draws and 2,000 MLHS draws almost every estimation run identifies

a local minimum. With 10,000 draws, both approaches return a local minimum for all

estimation runs. Thus, with high integration accuracy, the particular starting guess has no

e↵ect on whether the estimator converges to a minimum or not.

Additionally, to evaluate the computational complexity of identifying a candidate min-

imum, we trace out how the number of simulation draws a↵ects the number of iterations

in the estimator’s inner loop, the nested contraction mapping, and the number of objec-

tive function evaluations, the outer loop, that are required for convergence. Table 4 shows

that this measure of computational complexity is roughly identical across the two simulation

approaches. In terms of the number of objective function evaluations we see a substantial

reduction when raising the number of draws from 50 to 10,000. The latter requires around
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Table 5: Choice of Optimizer and Convergence Threshold

Optimizer E↵ect
Nelder-Mead BFGS Simulated Annealing

draws J �
price

J �
price

J �
price

50 175.1 2.466 170.3 2.662 359.8 0.919
[22.53, 251.7] [1.337, 4.228] [24.34, 251.7] [1.334, 5.912] [234.9, 628.5] [.037, 2.466 ]

5,000 234.4 1.472 233.2 1.484 309.7 1.000
[227.6, 244.4] [1.327, 1.533] [227.6, 242.0] [1.428, 1.531] [259.6, 405.7] [.089, 1.866]

10,000 231.4 1.460 231.6 1.465 319.5 1.03
[225.4, 237.9] [1.423, 1.485] [225.4, 236.9] [1.446, 1.484] [253.2, 481.6] [.243, 1.888]

Convergence Threshold E↵ect
50 MLHS draws 10,000 MLHS draws

�
inner

10�4 10�9 10�16 10�4 10�9 10�16

J 241.4 175.8 170.3 245.8 231.6 231.6
[197.8, 311.2] [43.88, 251.7] [24.3, 251.7] [224.6, 265.5] [225.4, 236.9] [225.4, 236.9]

�
price

1.488 2.453 2.662 1.394 1.466 1.465
[.859, 2.462] [1.335, 4.089] [1.334, 5.911] [1.169, 1.922] [1.446, 1.486] [1.446, 1.484]

Note: �price is the average of the estimated �price coe�cients. The 2.5th and 97.5th quantiles of the outcome
distributions for the objective function values and �price are shown in square brackets. To conserve space,
we only report the outcomes from the MLHS simulation approach. The results are based on running the
full 2,500 estimations each for a given number of draws. Thus, the top panel is based on a total of 22,500
estimations and the bottom panel is based on 15,000 estimations. The reported results for the simulated
annealing optimizer are based on 1,000 iterations of the optimizer. As can be seen, the simulated annealing
optimizer did not converge at this point.

57 iterations, while the former needs more than 115 evaluations to arrive at a local minimum

candidate. We also obtain a sizable reduction in the number of iterations in the contraction

mapping from more than 40 to less than 30.

Finally, we examine how sensitive the estimation outcomes are with respect to the choice

of the optimization algorithm and the choice of the inner convergence threshold for the

aggregate market share inversion. The top panel of Table 5 shows how the choice of opti-

mization algorithm a↵ects the outcomes of the estimation. The results are based on running

the 2,500 estimations each for 50, 5,000 and 10,000 MLHS draws with di↵erent optimization

algorithms. We select one representative algorithm from three classes of optimization ap-

proaches. The Nelder-Mead algorithm falls into the category of derivative-free optimizers,

the BFGS optimizer is a quasi-Newton optimizer that is derivative-based and lastly, simu-

lated annealing belongs to the class of stochastic optimizers. For the sake of brevity, we focus
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on the average values of the objective function, �
price

and the estimates that are based on

MLHS draws only. We obtain qualitatively identical outcomes for the remaining coe�cients

and the outcomes that we obtain using standard Monte Carlo draws. With 50 draws, we can

see di↵erences in the average outcomes and their empirical 95 percent confidence intervals

across the optimization approaches. The estimates that we obtain with simulated annealing

stand out in particular. Similar to KM, we have found that this optimization algorithm does

not converge within a reasonable amount of time. For the Nelder-Mead and quasi-Newton

approaches, the di↵erences in estimation outcomes turn out to be negligible for both 5,000

and 10,000 MLHS draws. Thus, with a su�ciently accurate numerical integration of the

aggregate market share function, the choice of optimization algorithm becomes irrelevant in

our setting.

In the bottom panel of Table 5, we present evidence on the role of the inner convergence

threshold, which Dubé, Fox, and Su (2012) demonstrate to have a major impact on the

behavior of the BLP estimator. We run the 2,500 estimations each using 50 and 10,000

MLHS draws with three di↵erent inner convergence thresholds: 10�4, which is the loose

threshold defined by Dubé, Fox, and Su (2012), 10�9 and 10�16. We impose the latter for all

of our 40,000 estimations. With only 50 MLHS draws, we indeed find that the convergence

threshold of the nested fixed point algorithm has a measurable impact on the estimation

outcomes. The estimates of �
price

and the identified minima of the objective di↵er across the

three di↵erent thresholds. With 10,000 MLHS draws, however, only the very lax criterion

of 10�4 delivers results that di↵er markedly. The lax criterion yields a wider range for the

identified minima and �
price

. The more stringent criteria of 10�9 and 10�16 are virtually

identical in terms of the estimation outcomes. Thus, a su�ciently high simulation accuracy

also substantially diminishes the impact of the nested fixed point’s convergence threshold.

4.4.2 Estimated random coe�cients and their statistical significance

To assess whether the estimated random coe�cients are jointly statistically significant, we

compute the Wald statistic for each local minimum. The null hypothesis is that the standard

logit model is true, so that H
0

: ✓ = 0.14 We do not reject the null for one out of a total

of 33,479 identified minima. The evidence in favor of consumer preference heterogeneity is

therefore overwhelming. This is also in line with the evidence above that our findings are

not driven by weak instruments, but by the propagation of simulation error.

14The test statistic follows a chi squared distribution with the degrees of freedom being equal to the
number of entries in ✓. At a 95 percent confidence level and with 5 random coe�cients, the critical value for
the Wald statistic is roughly 11.07.
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Figure 3: Range of Random Coe�cient Estimates and Their Joint Statistical Significance
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Note: To make changes in and around the medians of the point estimates easier, we do not plot the outliers.
Moreover, to conserve space, we only show the box plots for the estimations using MLHS draws. The Monte
Carlo counterparts are qualitatively identical. The Wald statistic is distributed chi squared with 5 degrees
of freedom. The null hypothesis is that all random coe�cients are zero, ✓ = 0.

The boxplots in Figure 3 clearly show, however, that we obtain a lot of uncertainty in

the random coe�cient’s point estimates when low numbers of draws are used to simulate

⌫. The range for the point estimates tightens drastically, however, as we move to 10,000

draws for both integration approaches. The random coe�cient for price, for example, lies

in a range between roughly 1.2 and 1.67 with a mean of 1.47 with 10,000 MLHS draws.

The corresponding range for 50 MLHS draws is roughly 0.2 to 7.6 with a mean of 2.6. The

random coe�cient for the constant has a mean of 4.5 across all identified minima and also

lies in a tight range. For air conditioning and miles per gallon, the point estimates strongly

tend toward zero. We see a similar trend for the random coe�cient that is placed on the

horsepower-weight ratio. Compared to the other four coe�cients, however, the range of the

point estimates is still quite large for this random coe�cient. We would need an even higher

24



Table 6: Range of Own-Price Elasticities Using Monte Carlo and MLHS Integration

Monte Carlo draws
⌘
jj

⌘
jj

# Draws Min. Mean Max. Std. Dev. Std. Dev.
50 -43.8 -10.4 -2.31 5.32 9.97
500 -16.5 -9.13 -4.25 2.25 9.55
5,000 -11.1 -8.53 -6.14 0.84 9.12
10,000 -10.7 -8.49 -6.78 0.65 9.07

MLHS draws
50 -43.7 -13.4 -2.36 7.47 13.0
500 -14.9 -9.47 -5.71 1.64 10.1
5,000 -9.68 -8.54 -7.33 0.41 9.15
10,000 -9.64 -8.49 -6.97 0.32 9.07

Note: MLHS stands for modified latin hypercube sampling. ⌘jj denotes the average own-price elasticity.
Each measure is computed across all local minima for a given number of draws. To arrive at the standard
deviation of own-price elasticities for each number of draws, we average the standard deviations across all
identified minima

number of draws to tighten this range further. This finding also illustrates that some random

coe�cients can be challenging to estimate. Nevertheless, when we examine the individual

statistical significance of the random coe�cients, a clear pattern emerges, which also applies

to the estimated preference heterogeneity for the horsepower-weight ratio. The t-statistic

for �
price

indicates that this coe�cient is highly statistically significant. In fact, with 10,000

MLHS draws, there are only 8 cases, where the t-statistic drops below 2.15 For �
constant

, we

observe a similar pattern. Out of 2,500 estimations, only 207 yield a t-statistic below 1.65

and only 358 estimations produce t-statistics below 2. For each �
mpg

and �
air

, there is not

a single case out of 2,500 estimated minima where the t-statistic exceeds 2. For �
hpwt

, there

are only 19 such instances. Thus, with su�cient integration accuracy, it turns out that only

the random coe�cients on price and the constant are statistically significant. The average

value of the Wald statistic, however, increases with the number of simulation draws even

though we are left with only two statistically significant random coe�cients. The range of

the Wald statistic also tightens considerably.

25



4.4.3 Model-implied economic outcomes

We assess how sensitive the model-implied economic predictions are to numerical approx-

imation error by characterizing the distribution of own-price elasticities. Table 6 presents

statistics on the first and second moments of the distribution of own-price elasticities. We

summarize the first moment of the distribution by showing the range and mean of the aver-

age own-price elasticity. With only 50 draws, we obtain the widest range, which reaches from

roughly -44 to around -2.3. Moving to 10,000 draws reduces this dispersion substantially.

The mean of the average own-price elasticity increases to -8.5 and the range covers only

roughly -11 to -6.8 for Monte Carlo draws and -9.6 to -7 for MLHS draws. The reduction in

the standard deviation of the estimated average own-price elasticity is impressive. For the

Monte Carlo and MLHS integration approaches, it respectively falls from 5.3 to 0.65 and

from 7.5 to only 0.32.

To examine the second moment of the distribution, we compute the standard deviation

of the own-price elasticities for each local minimum and average the results over all minima.

Both integration approaches tend towards the same measure of the distribution’s spread.

The estimated standard deviation is roughly 9 when using 10,000 draws to integrate the

aggregate market share function. For lower numbers of draws, the spread is systematically

higher.

4.5 Merger simulation

Lastly, we perform a simulation of the equilibrium that results from a merger between GM

and Chrysler. These kind of counter-factual simulations are often the ultimate questions of

interest in applied industrial organization studies. We simulate this scenario for each of the

20 years in the sample and average the results using units sold as weights. Figure 4 shows

the distributions of the simulated change in consumer welfare following the merger for the

two simulation approaches.

With only 50 draws, the estimation can deliver outcomes that range from hardly any

detrimental e↵ect to consumer welfare to an average annual welfare loss between 4 and 6

billion dollars. With 10,000 draws, the Monte Carlo and MLHS approaches deliver a mean

annual consumer welfare loss of close to 1.5 billion dollars. With 50 draws, this estimate

drops by roughly 40 percent to around 900 million dollars. The direction of this change

is in line with how an increase in the number of simulation draws a↵ects the estimates of
15We compute Eicker-Huber-White standard errors.
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Figure 4: Change in Consumer Welfare
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Note: The panels show the distribution of the average annual change in consumer welfare following a merger
between GM and Chrysler.

own-price elasticities. We consistently obtain own-price elasticities of lower magnitude for

a higher number of simulation draws. Thus, with fewer draws demand is estimated to be

overly elastic. This immediately implies that the welfare losses and price changes following a

merger in the market are smaller with a low integration accuracy. We surmise that this e↵ect

is driven by having su�ciently strong IVs. These e↵ectively bound the estimates of own-price

elasticities away from one. Simulation error produces a wider spread of the estimates. With

a bound on own-price elasticities at one, this spread is likely to lead to an over-estimation

of demand elasticities, which in turn a↵ects the outcomes of our merger simulation.

Table 7 shows how this biases the estimates of post-merger price and profit changes. The

relatively crude approximations to aggregate market shares deliver price and profit e↵ects

that are on average too low and yield substantially wider confidence intervals. In relative

terms, this bias is substantial. For both simulation approaches, using 10,000 draws gives

an average price e↵ect that is roughly 45 percent greater than what we obtain with only 50

draws. For the profit e↵ect, the bias is between 15 and 24 percent for the MLHS and Monte

Carlo approach, respectively.
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Table 7: Counterfactual Price and Profit Changes for the Merging Parties following a
Chrysler-GM Merger

Monte Carlo draws MLHS draws
draws �p (percent) �⇡ (mln 1983 dollars) �p (percent) �⇡ (mln 1983 dollars)
50 3.53 418 3.49 454

[1.85, 6.85] [191, 640] [1.56, 6.37] [297, 683]
500 4.78 503 5.03 526

[2.61, 6.93] [301, 660] [3.21, 6.95] [384, 666]
5,000 5.14 521 5.15 524

[3.81, 6.40] [397, 620] [4.22, 5.84] [457, 568]
10,000 5.09 519 5.10 521

[4.17, 6.09] [431, 604] [4.56, 5.71] [479, 568]

Note: The reported figures are based on simulating the GM-Chrysler merger for each of the 20 years in the
sample and averaging the simulated outcomes by units sold. 95 percent confidence intervals are shown in
square brackets.

5 Computational costs

Dubé, Fox, and Su (2012) point out that the desire to speed up the estimation of BLP

models confronts the researcher with the temptation to introduce approximation or simula-

tion error. Our results show that giving in to this temptation will backfire by undermining

the replicability and reliability of the estimation results. On the other hand, increasing the

number of Monte Carlo simulation draws to a su�cient level can induce burdensome or even

infeasible computational costs.

In this section, we first highlight the trade-o↵ between accuracy and speed in our sim-

ulation exercise (Section 5.1). Then we discuss di↵erent ways to achieve higher accuracy

while reducing the computational costs by (1) tweaking the algorithm for the inversion of

the market shares (Section 5.2) and (2) using di↵erent numerical integration algorithms (Sec-

tion 5.3). Section 5.4 briefly introduces an R package and Matlab code for the estimation

of BLP models that include these improvements and are a computationally more e�cient

implementation of the BLP estimation algorithm than the Matlab programs of KM, which

are based on the code accompanying Nevo (2000). We attain speedups of 7 and 6 for the R

package and our Matlab code, respectively.
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Figure 5: Computational Burden versus Accuracy
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Note: The dashed lines in the left plot show the 95 percent empirical confidence intervals for the time
required to complete a BLP model estimation with the corresponding number of draws on the x-axis. In
the right panel, the solid black line shows the asymptotic convergence rate that applies to both numerical
integration approaches.

5.1 The tradeo↵ between speed and reliability

How much precision is gained by an increase in the number of simulation draws and how

much does this raise the computational burden of a single model estimation? The left panel

of Figure (5) plots the average time it takes to estimate specification (16) for each number

of simulation draws. Note that all axes are on a log-scale for the sake of readability. The

computational burden increases linearly with the number of draws. In fact, we obtain an

elasticity of close to one for the runtime of an estimation with respect to the number of

simulation draws. Moreover, we also find that using MLHS draws requires a roughly 15

percent longer compute time on average.16 MLH-sampling ensures that a uniform number

of draws is generated for each quantile of the assumed distribution of ⌫. We therefore obtain

more simulation draws in the tails of the distribution with this sampling scheme than with

standard Monte Carlo sampling. This causes the market share inversion using MLHS draws

to take a longer time to converge for values of ✓
2

that are far away from ✓⇤.

The right panel shows how the variance of the identified minima from the 40,000 BLP

model estimations decreases with the log-number of simulation draws. With only 50 simu-

16With 10,000 draws, the average BLP estimation that uses Monte Carlo draws takes 700 seconds, while
estimation with MLHS draws takes roughly 800 seconds.
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lation draws, we obtain a variance of roughly 4,000 for both integration approaches. With

10,000 draws the variance falls to 44 for MLHS integration and to 225 for Monte Carlo

integration. Thus, roughly 5 times as many Monte Carlo draws are needed to attain the

same integration accuracy of a given number of MLHS draws. We therefore find estimation

using MLHS draws to be computationally more e�cient even when each estimation run on

average takes 15 percent longer than when using Monte Carlo draws. The solid black line

plots the asymptotic convergence rate that applies to both integration approaches. We can

see that the actual reduction in the variance of the identified local minima closely follows

the asymptotic convergence rate.

Putting both panels together, we can state that doubling the number of simulation draws

roughly reduces the variance of the objective function by half. This fits the behavior of the

estimator well for a su�ciently large number of draws; in our case from roughly 500 draws

onwards. The same convergence rate applies to MLHS draws. This sampling method can

match the variance of the objective function obtained with standard Monte Carlo simulation

with only a fifth of the number of Monte Carlo draws, however. The increase in accuracy

requires a roughly one-for-one increase in compute times. It takes roughly 200 times longer

to estimate specification (16) with 10,000 draws than with 50 draws. Even though this

might sound dramatic, keep in mind that we are moving to 800 seconds or 13 minutes and

20 seconds on average for MLHS integration.

As our results above stress, performing relatively few estimations with many simulation

draws that produce precise and reliable results are useful for answering economic questions of

interest. Running many more estimations with few numbers of draws gives highly unstable

and on average biased results. Following the implications of the Knittel-Metaxoglou critique

in this situation requires re-estimating the model for di↵erent optimizers and convergence

criteria, for example, and makes the transparent communication of the estimation results

more di�cult. A direct comparison of the compute times for a single estimation of (16) is

therefore lopsided.

Accurate numerical integration comes at the price of a higher computational burden,

but rewards the researcher with reliability and therefore a substantially lessened need for

extensive robustness checks. The researcher’s main concern should therefore be the reliability

of the estimates and not the manageable computational burden of running the estimations.

Having said that, we provide two approaches for decreasing the computational burden of

BLP model estimations. First, the 40,000 BLP estimations are in fact an “embarrassingly

parallel” computational task: each estimation is independent of all other estimations. The
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speedup from parallelization therefore moves almost one-for-one with the number of compute

cores that are used.17 Second, we provide a simple reformulation of the BLP contraction

mapping that gives a speedup of roughly 2. The nitty gritty of this reformulation is discussed

next.

5.2 Speeding up the inversion of market shares

Iterating on the BLP contraction mapping, (11), until convergence is the most compute-

intensive part of the estimation. We can speed up the inversion by a factor of roughly

2 by avoiding a large number of numerical divisions. Nevo (2000) notes in his Appendix

that taking logs is a computationally costly operation and that the computational burden of

repeatedly solving the fixed point during the estimation can be reduced by exponentiating

the equation.
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Here, w ⌘ exp(�
j

) is the exponential of the mean utility vector. This reformulation gives

a substantial speedup in computing the contraction mapping by avoiding the need to re-

compute the log shares during the iteration. In the denominator of the expression, the

model-implied aggregate market share for each of the J products is computed. To do so, the

full matrix of consumer-level choice probabilities must be computed.
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◆
R

is a vector of ones with R elements. It has the e↵ect of stacking the vector of mean utilities

horizontally R times. In the numerator ◆
J

stacks the denominator vertically J times. This

makes the numerator and denominator conformable and the s
rj

’s for a whole market can

be computed in one matrix operation. We are dividing a J ⇥ R matrix by another J ⇥ R

matrix, which requires J ⇤R divisions.

17The Matlab code that we have used will be made available online and we have made available the R
package BLPestimatoR on the CRAN repository that uses the same speedup of the contraction mapping.
Both programs implement a parallelization scheme that runs each estimation independently.
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We can avoid a large number of these divisions by noting that the contraction mapping

can be formulated in terms of consumer-specific choice probabilities for the outside option.

Let v
rj

⌘ exp(µ
rj

).
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In the denominator on the rhs only the R choice probabilities for the outside option must

be computed instead of the full matrix of choice probabilities for the inside products.
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The alternative fixed point iteration (19) only requires a total of J +R instead of J + J ⇤R

numerical divisions. Unless there is only one inside product in the market, the computa-

tional burden for our reformulation in terms of the consumer-specific outside good choice

probabilities has a strictly lower computational burden.

Figure 6 illustrates this. For the BLP automobile data, we solve the nested fixed point for

each of KM’s 50 starting guesses. We do this for numbers of draws between 50 and 100,000.

The solid blue line plots the time to convergence required by the Nevo version of the fixed

point, while the dashed red line corresponds to our version of the same fixed point problem.

We want to emphasize that both versions need exactly the same number of iterations to

reach the convergence threshold and give exactly the same �⇤ for all of the starting guesses.

Formulating the contraction mapping in terms of the outside good shares yields a speedup

of at least 2. This matches the speedup of the approximate BLP estimator of Lee and Seo

(2015), which uses a linear approximation of the market share equation to solve the fixed

point problem analytically. We attain roughly the same speedup, but solve the fixed point

problem exactly and thereby retain all the properties of the original BLP estimator without

introducing an additional source of approximation error that propagates in the estimator’s

objective function.18

18The precision with which the fixed point is solved is of course limited by the convergence threshold.
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Figure 6: Computational Burden of Solving the Fixed Point
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Note: The left panel shows the average time to reach the convergence threshold 10�14 in the contraction
mapping over KM’s 50 random starting guesses for the random coe�cients. The black line shows the
outcomes for the original BLP contraction mapping, while the solid blue line corresponds to the fixed point
formulation of Nevo (2000) and the dashed red line shows our reformulation. We evaluate 50, 100, 200, 500,
1,000, 2,000, 5,000, 10,000, 50,000 and 100,000 draws using 10 independently generated samples and average
the time until convergence across these 10 sets. The right panel plots the ratio of the time to convergence
for the Nevo and our fixed point formulation.

5.3 Numerical integration algorithms

The critical integral in the market share equation, (5), can be approximated with di↵erent

numerical algorithms. The choice of the algorithm can have large e↵ects on the accuracy

at a given computational cost (or on the required computational burden to attain a given

accuracy). In our main analyses, we have seen that plain-vanilla Monte Carlo simulation

requires roughly 4 to 5 times as many draws as MLHS-based approximation to attain the

same integration accuracy. Given that the computational burden increases roughly one-for-

one with the number of simulation draws, it follows that Monte Carlo draws present 4 to 5

times the computational burden of MLHS draws.

There are a number of other alternative approaches that may be more e�cient than

MLHS. For example, Nevo (2001) uses Halton draws, which Hess, Train, and Polak (2006)

find to perform roughly on par with MLHS draws. Sovinsky Goeree (2008) applies antithetic

sampling to increase simulation e�ciency. This simulation approach has the additional

advantage that it yields an objective function that is symmetric around the origin.
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In low dimensions, Gaussian quadrature can be very e�cient. In higher dimensions,

sparse-grids quadrature is a potentially powerful approach, see Heiss and Winschel (2008). It

has been successfully applied for the estimation of BLP models for example by Björnerstedt

and Verboven (2016). In our own experience with our setup for this paper, sparse grids

quadrature works very well in the majority of cases.19

Importance sampling and adaptive integration algorithms can greatly improve the ap-

proximation quality, see Heiss (2010). Berry, Levinsohn, and Pakes (1995) use importance

sampling to increase the accuracy of numerically integrating the model-implied aggregate

shares. Brunner (2017) shows that this is a very promising approach in the context of BLP

model estimation. Due to space constraints, we cannot go into more detail here. As our re-

sults clearly indicate that accurate approximations are critical, and since the computational

burden can be overwhelming, there is a large potential for further improving the approxi-

mation algorithms. To reduce the computational burden of BLP model estimation we also

provide software that is several times faster than the replication code of KM, which in turn

is based on the Matlab code of Nevo (2000).

5.4 The BLPestimatoR package and Matlab code for e�cient es-

timation

We have implemented our suggestions to speed up the BLP estimation in the R package

BLPestimatoR, available at the Comprehensive R Archive Network.20 In addition to the

algorithmic refinements from Section 5.2 and di↵erent approximation algorithms, the core

of the package is written in the C language. We also provide our Matlab code that we have

used for the 40,000 BLP model estimations in this paper. Both programs use parallelization

to reduce the computational time required to run several independent estimations of BLP

model specifications. To illustrate the speedups that can be expected we use a horse race

between the code provided by KM, which in turn is based on the Matlab code accompanying

Nevo (2000), the R package BLPestimatoR and our Matlab code.21

The horse race is structured as follows. We generate 1,000 independent sets of pref-

erence draws, ⌫, with 1,000 simulation draws each. We then fix the parameter vector

19In extreme cases with poor parameter starting guesses, sparse grids approximation can cause problems
with negative market shares. These cause problems if they aren’t dealt with appropriately.

20See https://cran.r-project.org/web/packages/BLPestimatoR/
21Aviv Nevo’s code is available at http://faculty.wcas.northwestern.edu/

~

ane686/supplements/rc_

dc_code.htm. However, it has not been updated for a while and some references to built-in Matlab functions
are no longer valid. The code provided in the replication files of KM is directly based on Nevo’s code and
can be used as a replacement.
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Table 8: Benchmarking BLP Estimation Routines

Matlab R - BLPestimatoR Matlab
KM BHRW - pure R Rcpp 2 cores BHRW - pure Matlab 2 cores
2.57 5.20 0.36 0.18 0.43 0.22

Note: All runtimes are reported in seconds. The results use the automobile data from BLP and implement
specification (16) above. The runtimes are based on 1,000 evaluations of the BLP estimator’s GMM-IV
objective function at independently drawn sets of preference heterogeneity, ⌫. Each set has 1,000 draws
per characteristic and resamples by market. The reported runtime is the time it took to evaluate the
objective once averaged over the 1,000 evaluations. The parameter vector at which we evaluate the objective
is ✓2 = (1.52, 5.84, 3.39, 0.41, 0.10). KM stands for the implementation of Knittel and Metaxoglou (2014),
while BHRW is the implementation used for the 40,000 BLP estimations in this paper. It uses the fixed
point formulation (19). The Rcpp entry for BLPestimtoR implements the contration mapping in C within
R using the Rcpp package (Eddelbuettel and François (2011)). The entries “2 cores” use parallelization at
the level of each combination of starting guess and set of preference draws. The R implementation uses
mclapply, while our Matlab code uses parfor. All benchmarks were run on the same Linux workstation
with an Intel Xeon E5-2640 v3 CPU.

✓
2

= (1.52, 5.84, 3.39, 0.41, 0.10) and evaluate the GMM-IV objective function value for each

of the 1,000 sets of draws. This requires the numerical inversion of the aggregate market

shares and therefore covers the bulk of the computational burden for a full BLP model esti-

mation. To obtain measures of the computational cost of each, we then average the runtimes

of each objective evaluation across the 1,000 sets of draws.

Table 8 presents the outcomes of this benchmarking exercise. The entry in the first col-

umn uses the replication code of KM. The code is modified to only perform the objective

function evaluation and nothing else. We also make sure that all programs use the same sets

of draws, convergence criteria and input variables. Thus, all programs perform mathemati-

cally equivalent evaluations of the objective function. Last but not least, all evaluations have

been run on the same computer. On average the Matlab code provided by KM requires 2.57

seconds per function evaluation. All entries for the BLPestimatoR package implement our

more computationally e�cient reformulation of the contraction mapping, (19). An imple-

mentation in pure R requires roughly twice the runtime of KM’s Matlab routine. When we

implement the contraction mapping in the C programming language using the Rcpp package,

however, the runtime of the R package drops to a mere 0.36 seconds, which gives roughly

a 7 times speedup over the KM code. Parallelizing the objective evaluations on 2 cores is

very e�cient, as it yields a speedup of almost exactly 2. The runtime drops to 0.18 seconds,

a 14 times speedup over KM’s program. Our Matlab routine is written purely in Matlab

and does not outsource the computation of the contraction mapping to an external C func-
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tion.22 Nevertheless, it performs almost on par with the BLPestimatoR package. Without

parallelization the runtime is 0.43 seconds, which is roughly 20 percent slower than our R

package and gives a 6 times speedup over KM’s Matlab routine. Parallelizing the objective

evaluations is again highly e�cient and roughly halves the runtime to 0.22 seconds.23

Both our R package and Matlab code are available for researchers who want to estimate

BLP models reliably and quickly. The R package also contains a convenient interface.

6 Conclusions

The BLP model’s nested fixed point estimator is susceptible to numerical instabilities if simu-

lation error in the model’s aggregate market share function is large. By substantially raising

the number of simulation draws, however, the sample moments are computed accurately

and the estimator’s sensitivity to the specific combination of starting guess, optimization

algorithm and the convergence threshold of the nested fixed point disappears. Instead, the

estimator delivers an increasingly narrowing set of minima of its objective function, which

also brings with it tighter sets of parameter estimates and implied economic predictions.

Given a suitable set of instrumental variables, the main concern for the reliable numerical

implementation of the BLP model should therefore be to reduce the approximation error in

the market share integral.

Berry, Linton, and Pakes (2004) show that in a single cross-section the BLP model’s

nested fixed point estimator satisfies asymptotic normality if the ratio of the number of

products squared over the number of simulation draws, J2/R, is bounded as the number

of products becomes large. This asymptotic result clearly resonates with our findings and

in this sense the estimator behaves as advertised. In the automobile data the number of

products varies between 72 and 150 products per market with on average roughly 111 cars

per year. For 10,000 draws the estimator delivers a local minimum of the objective function

for every combination of starting guess and set of simulation draws.

The reduction of simulation errors simplifies the implementation, verification and com-

munication of BLP model estimates relative to the guidance o↵ered by KM and Goldberg

and Hellerstein (2013). We find it unnecessary to re-estimate the model with multiple opti-

mization algorithms once simulation error is taken seriously. This also highlights potential

22This is possible in Matlab using a mex file.
23We have also implemented the contraction mapping in pure Fortran. The maximum speedup over pure

Matlab was around 2 and requires switching on several compiler optimizations, which make the code less
safe than Matlab. The program, for example, does no longer check whether arrays are accessed inbounds.
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gains in computational e�ciency. The Simplex or Nelder-Mead optimization algorithm is

frequently used, because it is seen as particularly robust. We could not find any measur-

able di↵erence in terms of estimation outcomes between the Nelder-Mead algorithm and

a trust-region method that uses an analytical gradient. The latter approach, however, is

computationally much more e�cient. Similarly, the impact of the nested fixed point’s con-

vergence threshold is substantially reduced with an accurate approximation of the model’s

aggregate market share function. A maximum threshold of 10�9 seems to work well for the

automobile data. The loose threshold of 10�4 should simply not be used in any setting.

We caution, however, to push our findings regarding the use of di↵erent starting guesses

too far. KM have selected these 50 starting guesses after having evaluated the objective

function for many more values. Thus, these guesses are likely to cover the potential parameter

space well. The higher the dimensionality of the estimation problem, the more di�cult it

becomes to provide a good coverage of the parameter space. Therefore, all else equal, more

guesses should be used for BLP models with a larger number of random coe�cients. We

therefore do not recommend a reduction in the number of starting guesses.24 Moreover, each

candidate minimum should be carefully verified. At the estimated parameter vector, the

Hessian matrix must be positive definite and the norm of the gradient must be close to zero.

We re-emphasize that consistent identification requires strong and valid IVs. Our results

show, however, that simulation error can easily overwhelm the estimates of the structural

error terms even when the IVs are not weak. The error propagates in the GMM-IV objec-

tive function and produces many local minima with a wide range of parameter estimates

and corresponding economic implications. The accurate numerical integration of the BLP

model’s aggregate market share function is therefore necessary to attain reliable identifi-

cation. A high degree of numerical integration accuracy and relevant and valid IVs are

therefore complements, not substitutes.

One way to reduce the approximation errors is to increase the number of Monte Carlo

simulation draws. As this can be challenging or prohibitive in terms of computational costs,

we finally discuss ways to improve the computational e�ciency of numerically integrating

the aggregate shares and provide e�cient R and Matlab code. In comparison with the

replication programs of KM, our routines provide speedups of roughly 7 and 6 for our R

package and Matlab program, respectively. We can therefore substantially alleviate the

burden of estimating BLP models reliably.

24Selecting 50 starting guesses from thousands of evaluations, however, is likely unnecessary.
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Dubé, Jean-Pierre, Jeremy T. Fox, and Che-Lin Su (2012). “Improving the numerical per-

formance of static and dynamic aggregate discrete choice random coe�cients demand

estimation”. In: Econometrica 80.5, pp. 2231–2267.

Eddelbuettel, Dirk and Romain François (2011). “Rcpp: Seamless R and C++ Integration”.

In: Journal of Statistical Software 40.8, pp. 1–18.

Goldberg, Pinelopi and Rebecca Hellerstein (2013). “A Structural Approach to Identifying

the Sources of Local Currency Price Stability”. In: Review of Economic Studies 80.1,

pp. 175–210.

Heiss, Florian (2010). “The Panel Probit Model: Adaptive Integration on Sparse Grids”.

In: Advances in Econometrics, Vol. 26: Maximum Simulated Likelihood Methods and

Applications. Ed. by William Greene and R. Carter Hill. Emerald, pp. 41–64.

Heiss, Florian and Viktor Winschel (2008). “Likelihood aroximation by numerical integration

on sparse grids”. In: Journal of Econometrics 144.1, pp. 62–80.

Hess, Stephane, Kenneth E. Train, and John W. Polak (2006). “On the use of a Modified

Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for

vehicle choice”. In: Transportation Research Part B: Methodological 40.2, pp. 147 –163.

Knittel, Christopher R. and Konstantinos Metaxoglou (2014). “Estimation of Random-

Coe�cient Demand Models: Two Empiricists’ Perspective”. In: Review of Economics

and Statistics 96.1, pp. 34–59.

38



Lee, Jinhyuk and Kyoungwon Seo (2015). “A computationally fast estimator for random

coe�cients logit demand models using aggregate data”. In: The RAND Journal of Eco-

nomics 46.1, pp. 86–102.

McCullough, B. D. and H. D. Vinod (2003). “Verifying the Solution from a Nonlinear Solver:

A Case Study”. In: American Economic Review 93.3, pp. 873–892.

Nevo, Aviv (2000). “A Practitioner’s Guide to Estimation of Random-Coe�cients Logit

Models of Demand”. In: Journal of Economics & Management Strategy 9.4, pp. 513–548.

— (2001). “Measuring Market Power in the Ready-to-Eat Cereal Industry”. In: Economet-

rica 69.2, pp. 307–342.

Petrosky-Nadeau, Nicolas and Lu Zhang (2017). “Solving the Diamond-Mortensen-Pissarides

Model Accurately”. In: Quantitative Economics 8.2, pp. 611–650.

Reynaert, Mathias and Frank Verboven (2014). “Improving the performance of random co-

e�cients demand models: The role of optimal instruments”. In: Journal of Econometrics

179.1, pp. 83–98.

Sovinsky Goeree, Michelle (2008). “Limited Information and Advertising in the U.S. Personal

Computer Industry”. In: Econometrica 76.5, pp. 1017–1074.

Stock, James H., Jonathan H. Wright, and Motohiro Yogo (2002). “A Survey of Weak In-

struments and Weak Identification in Generalized Method of Moments”. In: Journal of

Business & Economic Statistics 20.4, pp. 518–529.

39



R I S DISC SSI N A RS 
 

267 Brunner, Daniel, Heiss, Florian, Romahn, André and Weiser, Constantin, Reliable 
stimation o  Random Coe i ient o it Demand odels, September 2017  

266 osse, Fabian, De ers, homas, S hildber -H ris h, Hannah and Fal , Armin,                
he Formation o  roso ialit  Causal iden e on the Role o  So ial n ironment,             
ul  2017  

26  Friehe, im and S hildber -H ris h, Hannah, redi tin  Norm n or ement  he 
Indi idual and oint redi ti e o er o  onomi  re eren es, ersonalit , and  
Sel -Control, ul  2017  

264 Friehe, im and S hildber -H ris h, Hannah, Sel -Control and Crime Re isited  
Disentan lin  the e t o  Sel -Control on Ris  a in  and Antiso ial Beha ior,        
ul  2017  

263 olste n, Bart and S hildber -H ris h, Hannah, Challen es in Resear h on 
re eren es and ersonalit  raits  easurement, Stabilit , and In eren e,                  
ul  2017  

262 an e, ir am R , ari  Di ersit  and Competition oli   Dri ers or Broadband 
Adoption in the uropean nion, ul  2017  

261 Reisin er, ar us and homes, im aul, anu a turer Collusion  Strate i  
Impli ations o  the Channel Stru ture, ul  2017  

260 She har, Shi a and We , Christian, n ertain er er S ner ies, assi e artial 
nership, and er er Control, ul  2017  

2 9 in , homas and Ne er, lri e, Fri tion-Indu ed Interban  Rate olatilit  under 
Alternati e Interest Corridor S stems, ul  2017  

2 8 Diermeier, atthias, oe e, Henr , Niehues, udith and homas, obias, Impa t o  
Ine ualit -Related edia Co era e on the Con erns o  the Citi ens, ul  2017  

2 7 Stiebale, oel and W ner, Ni ole, As, In estment and Finan in  Constraints,             
ul  2017       

2 6 Wellmann, Ni olas, - essa in  and obile ele ommuni ation  A oint           
ar et   An mpiri al Approa h, ul  2017  

2  Ciani, Andrea and Imbruno, i hele, i roe onomi  e hanisms Behind port 
Spillo ers rom FDI  iden e rom Bul aria, une 2017                                             
Forth omin  in  Re ie  o  World onomi s  

2 4 Hunold, atthias and uthers, ohannes, Capa it  Constraints, ri e Dis rimination, 
Ine i ient Competition and Sub ontra tin , une 2017  

2 3 Dert in el- alt, ar us and ster, ats, Salient Compromises in the Ne s endor 
ame, une 2017                                                                                                               

Forth omin  in  ournal o  onomi  Beha ior and r ani ation  

2 2 Sie mann, anuel, Chara teristi s, Causes, and ri e e ts  mpiri al iden e o  
Intrada  d e orth C les, a , 2017  



2 1 Benndor , ol er, oellers, Claudia and Normann, Hans- heo, perien ed s  
Ine perien ed arti ipants in the ab  Do the  Beha e Di erentl , a  2017  
Forth omin  in  ournal o  the onomi  S ien e Asso iation  

2 0 Hunold, atthias, Ba ard nership, ni orm ri in  and ntr  Deterren e,          
a  2017  

249 rei emeier, do and Wrona, ens, Industrialisation and the Bi  ush in a lobal 
onom , a  2017  

248 Dert in el- alt, ar us and ster, ats, o al hin in  and S e ness 
re eren es, April 2017  

247 She har, Shi a, Homin  Choi e and lat orm ri in  Strate , ar h 2017  

246 anasa is, Constantine, itro ostas, an elos and etra is, mmanuel, Strate i  
Corporate So ial Responsibilit  b  a ultinational Firm, ar h 2017  

24  Ciani, Andrea, In ome Ine ualit  and the ualit  o  Imports, ar h 2017  

244 Bonnet, Céline and S hain, an hilip, An mpiri al Anal sis o  er ers  i ien  
ains and Impa t on Consumer ri es, Februar  2017  

243 Benndor , ol er and artine - artine , Ismael, erturbed Best Response D nami s 
in a Ha -Do e ame, anuar  2017                                                                        

ublished in  onomi s etters, 1 3 2017 , pp  61-64  

242 Dauth, Wol an , Findeisen, Sebastian and Suede um, ens, rade and 
anu a turin  obs in erman , anuar  2017                                                     

Forth omin  in  Ameri an onomi  Re ie , apers  ro eedin s  

241 Borrs, inda and nauth, Florian, he Impa t o  rade and e hnolo  on Wa e 
Components, De ember 2016  

240 Hau ap, ustus, Heimesho , lri h and Sie mann, anuel, Sellin  asoline as a   
B - rodu t  he Impa t o  ar et Stru ture on o al ri es, De ember 2016  

239 Herr, Anni a and Normann, Hans- heo, Ho  u h riorit  Bonus Should be i en to 
Re istered r an Donors  An perimental Anal sis, No ember 2016  

238 Ste en, Ni o, ptimal ari s and Firm e hnolo  Choi e  An n ironmental 
Approa h, No ember 2016  

237 Behrens, ristian, ion, iordano, urata, asusada and Suede um, ens, Distorted 
onopolisti  Competition, No ember 2016  

236 Be mann, laus, De enter, Ral  and homas, obias, Can Ne s Dra  Blood  he 
Impa t o  edia Co era e on the Number and Se erit  o  error Atta s,          
No ember 2016                                                                                                      
Forth omin  in  ea e onomi s, ea e S ien e and ubli  oli  

23  De enter, Ral , Dulle , e and homas, obias, Does the 4th state Deli er  
o ars a ore Dire t easure o  oliti al edia Bias, No ember 2016  

234 er, Hartmut, rei emeier, do, oser, Christoph and Wrona, ens, shorin  
and ob olarisation Bet een Firms, No ember 2016  

233 oellers, Claudia, St hmeier, orben and Wen el, obias, Sear h Costs in 
Con entrated ar ets  An perimental Anal sis, tober 2016  



232 oellers, Claudia, Reputation and Fore losure ith erti al Inte ration  
perimental iden e, tober 2016  

231 Alipranti, aria, itro ostas, an elos and etra is, mmanuel, Non- omparati e 
and Comparati e Ad ertisin  in li opolisti  ar ets, tober 2016                  
Forth omin  in  he an hester S hool  

230 eits h o, homas D , iu, in  and Wan , ao, In ormation A uisition, Si nalin  
and earnin  in Duopol , tober 2016  

229 Stiebale, oel and en appa, De , A uisitions, ar ups, i ien , and rodu t 
ualit  idende rom India, tober 2016  

228 De enter, Ral  and Heimesho , lri h, redi tin  Ad ertisin  olumes  A Stru tural 
ime Series Approa h, tober 2016                                                                    
ublished in  onomi s Bulletin, 37 2017 , olume 3  

227 Wa ner, alentin, See in  Ris  or Ans erin  Smart  Framin  in lementar  
S hools, tober 2016  

226 oellers, Claudia, Normann, Hans- heo and Sn der, Christopher , Communi ation 
in erti al ar ets  perimental iden e, ul  2016                                      

ublished in  International ournal o  Industrial r ani ation, 0 2017 , pp  214-2 8  

22  Ar entesi, lena, Bu irossi, aolo, Cer one, Roberto, Duso, omaso and arra o, 
Alessia, he e t o  Retail er ers on ri es and ariet  An -post aluation, 
une 2016  

224 A hadadashli, Hamid, Dert in el- alt, ar us and We , Christian, he Nash 
Bar ainin  Solution in erti al Relations With inear Input ri es, une 2016  

ublished in  onomi s etters, 14  2016 , pp  291-294  

223 Fan, in , hn, ai- e and a ontaine, Fran ine, Finan ial Constraints and oral 
Ha ard  he Case o  Fran hisin , une 2016      
 Forth omin  in  ournal o  oliti al onom  

222 Benndor , ol er, artine - artine , Ismael and Normann, Hans- heo, uilibrium 
Sele tion ith Coupled opulations in Ha -Do e ames  heor  and periment in 
Continuous ime, une 2016                                                                                  

ublished in  ournal o  onomi  heor , 16  2016 , pp  472-486  

221 an e, ir am R   and Sari , Amela, Substitution bet een Fi ed, obile, and oi e 
o er I  elephon   iden e rom the uropean nion, a  2016  

ublished in  ele ommuni ations oli , 40 2016 , pp  1007-1019  

220  De enter, Ral , Heimesho , lri h and th, Hendri , he Impa t o  the ar et 
ransparen  nit or Fuels on asoline ri es in erman , a  2016  
ublished in  Applied onomi s etters, 24 2017 , pp  302-30  

219 S hain, an hilip and Stiebale, oel, Inno ation, Institutional nership, and 
Finan ial Constraints, April 2016  

218 Hau ap, ustus and Stiebale, oel, Ho  er ers A e t Inno ation  heor  and 
iden e rom the harma euti al Industr , April 2016  

217 Dert in el- alt, ar us and We , Christian, iden e rodu tion in er er Control  
he Role o  Remedies, ar h 2016  



216 Dert in el- alt, ar us, hler, atrin, an e, ir am R   and Wen el, obias, 
Demand Shi ts Due to Salien e e ts  perimental iden e, ar h 2016  

ublished in  ournal o  the uropean onomi  Asso iation, 1  2017 , pp  626-6 3  

21  De enter, Ral , Heimesho , lri h and homas, obias, edia Co era e and Car 
anu a turers  Sales, ar h 2016  
ublished in  onomi s Bulletin, 36 2016 , pp  976-982  

214 Dert in el- alt, ar us and Riener, erhard, A First est o  Fo usin  heor , 
Februar  2016  

213 Hein , atthias, Normann, Hans- heo and Rau, Hol er A , Ho  Competiti eness 
a  Cause a ender Wa e ap  perimental iden e, Februar  2016  

Forth omin  in  uropean onomi  Re ie , 90 2016 , pp  336-349  

212 Fudi ar, Roman, Hottenrott, Hanna and a son, Cornelia, What s the ri e o  
Consultin  e ts o  ubli  and ri ate Se tor Consultin  on A ademi  Resear h, 
Februar  2016  

211 St hmeier, orben, Competition and Corporate Control in artial nership 
A uisitions, Februar  2016   

ublished in  ournal o  Industr , Competition and rade, 16 2016 , pp  297-308  

210 u , ohannes, ari - ediated Net or  e ts ith In ompletel  In ormed 
Consumers, anuar  2016  

209 Dert in el- alt, ar us and We , Christian, Stru tural Remedies as a Si nallin  
De i e, anuar  2016  

ublished in  In ormation onomi s and oli , 3  2016 , pp  1-6   

208 Herr, Anni a and Hottenrott, Hanna, Hi her ri es, Hi her ualit  iden e From 
erman Nursin  Homes, anuar  2016  

 ublished in  Health oli , 120 2016 , pp  179-189  

207 audin, ermain and ant ari, Despoina, ar in S uee e  An Abo e-Cost 
redator  ri in  Approa h, anuar  2016  
ublished in  ournal o  Competition a   onomi s, 12 2016 , pp  1 1-179  

206 Hottenrott, Hanna, Re h user, Sas ha and eu elers, Reinhilde, r anisational 
Chan e and the rodu ti it  e ts o  reen e hnolo  Adoption, anuar  2016  

ublished in  ner  and Ressour e onomi s, 43 2016 , pp  172 194  

20  Dauth, Wol an , Findeisen, Sebastian and Suede um, ens, Ad ustin  to loba-
li ation  iden e rom Wor er- stablishment at hes in erman , anuar  2016  

204 Baner ee, Debosree, Iba e , ar ela, Riener, erhard and Wollni, ei e, 
olunteerin  to a e on o er  perimental iden e rom atrilineal and 
atriar hal So ieties in India, No ember 201  

203 Wa ner, alentin and Riener, erhard, eers or arents  n Non- onetar  
In enti es in S hools, No ember 201  

202 audin, ermain, ass- hrou h, erti al Contra ts, and Bar ains, No ember 201  
ublished in  onomi s etters, 139 2016 , pp  1-4  

201 Demeulemeester, Sarah and Hottenrott, Hanna, R D Subsidies and Firms  Cost o  
Debt, No ember 201  



200 rei emeier, do and Wrona, ens, o-Wa  i ration Bet een Similar Countries, 
tober 201  

Forth omin  in  World onom  

199 Hau ap, ustus and St hmeier, orben, Competition and Antitrust in Internet ar ets, 
tober 201  

ublished in  Bauer,  and  at er ds , Handboo  on the onomi s o  the Internet, 
d ard l ar  Cheltenham 2016, pp  183-210  

198 Alipranti, aria, illiou, Chr so alantou and etra is, mmanuel, n erti al 
Relations and the imin  o  e hnolo , tober 201  

ublished in  ournal o  onomi  Beha ior and r ani ation, 120 201 , pp  117-129  

197 ellner, Christian, Reinstein, Da id and Riener, erhard, Sto hasti  In ome and 
Conditional enerosit , tober 201  

196 Chla , Nadine and Riener, erhard, in , Sp in , Sabota in  ro edures and 
Conse uen es, September 201  

19  audin, ermain, erti al Bar ainin  and Retail Competition  What Dri es 
Counter ailin  o er , a  2017 First ersion September 201                   
Forth omin  in  he onomi  ournal  

194 Baumann, Florian and Friehe, im, earnin -b -Doin  in orts  iabilit  and 
In ormation About A ident e hnolo , September 201  

193 De e er, Fabri e, Fis her, Christian and Suede um, ens, Relational Contra ts and 
Supplier urno er in the lobal onom , Au ust 201                                              

ublished in  ournal o  International onomi s, 103 2016 , pp  147-16  

192 u, i uan and Wen el, obias, uttin  on a i ht eash and e ellin  la in  Field  
An periment in Strate i  b us ation and Consumer rote tion, ul  201  

ublished in  International ournal o  Industrial r ani ation, 42 201 , pp  120-128  
 
191 Ciani, Andrea and Bartoli, Fran es a, port ualit  p radin  under Credit 

Constraints, ul  201  
 
190 Hasnas, Irina and We , Christian, Full ersus artial Collusion amon  Brands and 

ri ate abel rodu ers, ul  201  

189 Dert in el- alt, ar us and ster, ats, iolations o  First- rder Sto hasti  
Dominan e as Salien e e ts, une 201   

ublished in  ournal o  Beha ioral and perimental onomi s, 9 201 , pp  42-46  

188 holodilin, onstantin, olmer, Christian, homas, obias and lbri ht, Dir , 
As mmetri  er eptions o  the onom  edia, Firms, Consumers, and perts, 
une 201  

187 Dert in el- alt, ar us and We , Christian, er er Remedies in li opol  under a 
Consumer Wel are Standard, une 201  

ublished in  ournal o  a , onomi s,  r ani ation, 32 2016 , pp  1 0-179  

186 Dert in el- alt, ar us, Salien e and Health Campai ns, a  201  
ublished in  Forum or Health onomi s  oli , 19 2016 , pp  1-22  

18   Wrona, ens, Border e ts ithout Borders  What Di ides apan s Internal rade  
a  201  



184 Amess, e in, Stiebale, oel and Wri ht, i e, he Impa t o  ri ate uit  on Firms  
Inno ation A ti it , April 201  

ublished in  uropean onomi  Re ie , 86 2016 , pp  147-160  

183 Iba e , ar ela, Rai, Asho  and Riener, erhard, Sortin  hrou h A irmati e A tion  
hree Field periments in Colombia, April 201  

182 Baumann, Florian, Friehe, im and Ras h, Ale ander, he In luen e o  rodu t 
iabilit  on erti al rodu t Di erentiation, April 201                                                        
ublished in  onomi s etters, 147 2016 , pp  - 8 under the title Wh  rodu t iabilit  
a  o er rodu t Sa et  

181 Baumann, Florian and Friehe, im, roo  be ond a Reasonable Doubt  aborator  
iden e, ar h 201  

180 Ras h, Ale ander and Waibel, Christian, What Dri es Fraud in a Creden e oods 
ar et   iden e rom a Field Stud , ar h 201  

179 eits h o, homas D , In on ruities o  Real and Intelle tual ropert  onomi  
Con erns in atent oli  and ra ti e, Februar  201  
Forth omin  in  i hi an State a  Re ie  

178 Bu h ald, A him and Hottenrott, Hanna, Women on the Board and e uti e 
Duration  iden e or uropean isted Firms, Februar  201  

177 Hebli h, Stephan, ameli, Al red and Riener, erhard, Re ional A ents on Indi idual 
onomi  Beha ior  A ab periment on in uisti  er orman e, Co niti e Ratin s 

and onomi  De isions, Februar  201  
ublished in  oS N , 10 201 , e011347  

176 Herr, Anni a, N u en, hu- an and S hmit , Hendri , Does ualit  Dis losure 
Impro e ualit  Responses to the Introdu tion o  Nursin  Home Report Cards in 

erman , Februar  201                                                                                          
ublished in  Health oli , 120 2016 , pp 1162-1170  

17  Herr, Anni a and Normann, Hans- heo, r an Donation in the ab  re eren es and 
otes on the riorit  Rule, Februar  201  
ublished in  ournal o  onomi  Beha ior and r ani ation, 131 art B 2016 , pp  139-149  

174 Bu h ald, A him, Competition, utside Dire tors and e uti e urno er  
Impli ations or Corporate o ernan e in the , Februar  201  

173 Bu h ald, A him and hor arth, Susanne, utside Dire tors on the Board, 
Competition and Inno ation, Februar  201  

172 De enter, Ral  and iessin , eonie, he e ts o  lite Sports arti ipation on 
ater ob Su ess, Februar  201  

171 Hau ap, ustus, Heimesho , lri h and Sie mann, anuel, ri e Dispersion and 
Station Hetero eneit  on erman Retail asoline ar ets, anuar  201   
Forth omin  in  he ner  ournal  

170 S h einber er, Albert  and Suede um, ens, De-Industrialisation and 
ntrepreneurship under onopolisti  Competition, anuar  201  
ublished in  ord onomi  apers, 67 201 , pp  1174-118  

 

lder dis ussion papers an be ound online at  
http ideas repe or s b di edp html 



 

 

ISBN 978-3-86304-266-0 


