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Kristian Giesen† Jens Suedekum‡

November 19, 2013

Abstract

There has been vast interest in the distribution of city sizes in an economy, but this research

has largely neglected that cities also differ along another fundamental dimension: age. Using

novel data on the foundation dates of more than 10,000 American cities, we find that older

cities in the US tend to be larger than younger ones. To take this nexus between city age and

city size into account, we introduce endogenous city creation into a dynamic economic model

of an urban system. The city size distribution that emerges in our economy delivers a close

fit to different types of US city size data. This evidence can resolve several recent debates,

and build a bridge between different views in the literature on city size distributions.
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1 Introduction

Ever since the seminal works by Auerbach (1913) and Zipf (1949), there has been vast interest

in the distribution of city sizes in an economy. This research has largely neglected, however, that

cities also differ along another fundamental dimension: age. Using novel data on the foundation

dates of more than 10,000 American cities, we show that age heterogeneity is a salient empirical

fact. The average US city in our sample is 139 years old today, but there are strong differences.

Boston was founded around 383 years ago, while places like Laguna Woods (CA) not even had

their 13th birthday yet. Importantly, we find that age and size are positively correlated: Doubling

the age of a city is – on average – associated with an increase of the city’s current population

size by 57%. The country’s city size distribution and the city age distribution, therefore, have a

systematic relationship that we explore in this paper.

In this paper, we introduce endogenous city creation and age heterogeneity into a dynamic

economic model of an urban system. Our starting point is the influential approach by Gabaix

(1999) and Eeckhout (2004) who consider urban systems where Gibrat’s law is satisfied, that is,

where all cities grow with the same expected rate irrespective of their current size. In Eeckhout

(2004) there is a fixed population that is freely mobile across a fixed number of equally old cities.

City sizes then – in fact, only then – converge to a lognormal (LN) distribution, as cities face

random productivity shocks and thus obey to the “pure” Gibrat’s law. The famous Zipf’s law for

city sizes emerges instead of the LN when an “impurity” is added, and cities are prevented from

becoming too small (Gabaix 1999).1

We assume that the country’s total population is growing. If the number of cities were fixed,

this would lead to rising congestion and decreasing equilibrium utility over time, as more and more

people have to be squeezed into the urban system. We hence allow for the creation of new cities,

which enables the population to spread across more and leads to age differences between cities.

When a new city is founded, it starts from a randomly drawn initial productivity which may reflect

some deep characteristics of the city’s location (Bleakley and Lin, 2012). Given this initial draw,

a new city accordingly adjusts to its equilibrium starting size through population inflows from the

established cities, and entrant cities with better productivity draws start off larger. Afterwards,

all cities are subject to random shocks which affect the evolution of their equilibrium sizes. Since

expected city growth is positive, our model then predicts – in line with the aforementioned facts –

that older cities tend to be larger than younger ones.

As for the distribution of growth rates across cities, Gibrat’s law is at work in our model as all

cities grow with the same expected rate in the long run. Yet, there are also deviations: new cities

(which tend to be relatively small) exhibit strong population growth rates during the transition

1Zipf’s law states that city sizes follow a Pareto distribution with tail exponent close to one. The country’s

largest city is then twice as large as the second-largest, three times as large as the third-largest city, and so on.
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towards spatial equilibrium, much higher than in established cities. Young cities thus initially grow

faster, but revert to the economy-wide average later on. Such a pattern is consistent with recent

empirical evidence on US urban growth over the last two centuries. In particular, the studies by

Desmet and Rappaport (2012) and Gonzáles-Val, Sánchez-Vidal and Viladecans-Marsal (2012) find

that, among young US cities, small ones initially grow faster than the rest of the economy. Among

old cities, however, small and large ones tend to grow with the same rate. Our model exhibits

such a pattern of urban growth. Furthermore, Michaels, Redding and Rauch (2012) report that, in

a comprehensive data set comprising not only large metropolitan areas, small cities tend to grow

faster. These authors do not consider city age, but bearing in mind that small cities are on average

younger, our model is in line with that evidence as well.2

From this urban system model with its empirically relevant new features, we are able to derive a

closed-form solution for the city size distribution (CSD) that emerges endogenously in our economy.

This turns out to be the so-called double Pareto lognormal (DPLN) distribution. It is characterized

by a lognormal body and power laws in the tails, which are fatter the stronger the age differences

between cities are. It thus unifies the LN suggested by Eeckhout (2004), and the Pareto distribution

(Zipf’s law) advocated by Gabaix (1999) and by Rozenfeld, Rybski, Gabaix and Makse (2011) in

a single model for the overall CSD. As has been shown elsewhere (see Giesen, Suedekum and

Zimmermann 2010), the DPLN distribution delivers a close fit to empirical city size data, both

in the US and in various other countries, and it (easily) outperforms the LN, Zipf’s law and also

other functional forms that have been suggested. It also does so in terms of ”adjusted fit”, that is,

when penalizing the DPLN for having a more flexible functional form with more free parameters.

The main contribution of this paper is then twofold. First, we derive a micro-founded economic

theory to explain why DPLN distributed city sizes may emerge.3 Second, we show with novel city

age data that the main buildings blocks of our model – city age heterogeneity and the positive

correlation of city age and city size – are empirically highly relevant. Ultimately, we therefore argue

that our urban system model which takes the nexus of city age and city size into account, is more

successful in matching contemporaneous city size data than alternative theoretical frameworks that

disregard this relationship. Furthermore, it leads to a pattern of urban growth that is consistent

with recent evidence, namely Gibrat’s law with stronger initial growth of young cities.

Finally, an additional contribution of this paper is that it can potentially settle a controversial

issue from the recent literature, which deals with the question on how to define a city in the first

2Finally, our model is also roughly consistent with the sequential urban growth pattern found by Cuberes (2012)

as fast-growing young cities will, over time, have a higher average rank in the urban hierarchy.
3The stochastic foundations of the DPLN distribution are discussed in Reed and Jorgensen (2005), who show

that it emerges by combining a scale-free growth process with a Yule process for the birth of new units. That

model is statistical in nature, however, and does not have economic micro-foundations. We provide an economic

theory for the DPLN distribution of city sizes by extending the seminal approach by Eeckhout (2004) to incorporate

endogenous city creation and age heterogeneity across cities.
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place. In fact, the influential contributions by Eeckhout (2004) and by Rozenfeld et al. (2011) use

different city size data, and come to divergent conclusions about the appropriate parametrization

of the CSD. Using administratively defined US Census places, Eeckhout (2004) shows that the

LN closely fits the data, thus providing empirical support for his model. Rozenfeld et al. (2011),

in contrast, use a bottom-up approach of constructing area clusters from high resolution data on

population density in the US, independently of administrative boundaries. They emphasize that

the sizes of area clusters with at least 13,000 inhabitants closely obey to Zipf’s law. Yet, when

analyzing the distribution of the entire US population across space, that is, the overall CSD across

all clusters, it turns out that Zipf’s law breaks down. Importantly, when fitting the LN to the

area clusters data, one also obtains a very poor fit as is shown in Figure 1 below. The LN thus

seems to approximate the overall CSD fairly well for one definition of US cities (Census places),

but not for the other (area clusters). By contrast, we show that the DPLN distribution closely

fits the empirical CSD across all settlements for both definitions of US cities (see Figure 1). Our

findings thus suggest that the CSD can be robustly approximated by the same functional form,

regardless of which city size data is used. This evidence is also fully in line with, but goes beyond

the findings of Rozenfeld et al. (2011): The DPLN is a parametrization for the overall CSD across

all clusters that is consistent with their claim that Zipf’s law holds among the large clusters.4

More generally, the DPLN builds a bridge between the “old” and the “new” literature on city

size distributions. It is fully consistent with Zipf’s law for large cities, and incorporates this into

a model for the overall size distribution across all cities.

The rest of this paper is organized as follows. In Section 2 we present our evidence on the distri-

bution of city sizes and show that the DPLN fits the empirical data better than other parametriza-

tions. Section 3 turns to our theoretical model of an urban system with endogenous city creation.

There we show that age heterogeneity across cities, together with Gibrat’s law, is key to under-

standing why the DPLN distribution of city sizes emerges. Section 4 presents our novel empirical

evidence on the nexus of city age and city size in the US. Finally, Section 5 concludes.

2 City size distributions: The evidence

2.1 Data

For our empirical analysis of the city size distribution (CSD) we utilize two different definitions

of US “cities”: Census places and area clusters. The former dataset refers to the year 2000 and

4Relatedly, some authors (most notably Levy 2009, Ioannides and Skouras 2013, and Malevergne, Pisarenko

and Sornette 2011) have argued that the large Census places also follow a Zipfian power law pattern that is only

imperfectly captured by the LN parametrization, even though the LN fits well outside the upper tail. The features

of the DPLN are precisely in line with that evidence. The debate between Levy (2009) and Eeckhout (2009) may

thus also be settled by our finding that the sizes of Census places are better approximated by a DPLN distribution.
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includes administratively defined settlements according to legal boundaries. It contains 25,359

cities with sizes ranging from one to about 8 million inhabitants (New York City). Comparable

data sets on the sizes of administratively defined settlements (not subject to a threshold size) are

by now available for many countries. This is a clear advantage. However, a disadvantage is that

the boundaries between those units are sometimes quite arbitrary, as two Census places may be

considered as separate cities even though they are essentially part of the same city.5

The second dataset has been constructed by (and is explained in detail in) Rozenfeld et al.

(2008, 2011). Here, cities are defined by using a clustering algorithm on high resolution data on

population densities in the US. We use their benchmark clusters with `=3 km, which leads to

23,499 cities covering about 96% of the US population in 2001 and range from one to about 16

million inhabitants (the New York cluster). The advantage of this data is that cities are defined

as genuine agglomerations ignoring administrative boundaries, thereby providing a comprehensive

portray how the US population spreads across space.6 A current disadvantage is that such data is

not (yet) available for many countries.

Figure 1 shows kernel density estimates (in logarithmic scale) of the empirical CSDs for both

definitions of cities, see the black solid lines. As can be seen, the mean size of area clusters is higher

than for the Census places, while the the variance is lower. These distributional features result

from the fact that the clustering algorithm tends to connect adjacent places into one agglomeration

(the same area cluster), as is explained in detail by Rozenfeld et al. (2008).

2.2 Parameterization and comparison of data fit

We first fit the LN distribution to the data by using maximum likelihood estimation (see Table

1 for the results). Figure 1 depicts the fitted LN distributions as the grey solid lines. For the

Census places, the figure corroborates Eeckhout’s (2004) finding: the LN indeed provides a good

fit. However, when using the area clusters, the LN plainly fails to match the data. In other words,

the LN seems to approximate the overall CSD fairly well only for one definition of US cities (Census

places). Once cities are defined as area clusters as in Rozenfeld et al. (2008, 2011), however, the

LN is no longer an appropriate parametrization.

Turning to Zipf’s law, it can be easily verified that it closely fits the data when focusing only on

large cities (in either definition).7 However, as is clear from Figure 1, outside the upper tail Zipf’s

5More details about the widely used Census places data can be found in the Geographic Areas Reference Manual

available online under http://www.census.gov/geo/www/garm.html. A further problem with this data is that it

only represents 74 % of the total US population who reside in incorporated or Census designated places.
6In the top range these area clusters are often coincident with metropolitan statistical areas (MSAs). However,

unlike the MSAs, the area clusters data is not subject to a minimum threshold size.
7We have verified the result by Rozenfeld et al. (2011). Using only area clusters that are larger than 13,000

inhabitants, a standard rank-size regression yields a highly significant tail exponent of 0.994 with a R2 level of 0.99.
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law eventually breaks down. Hence, Zipf’s law is not a useful description for the distribution of

city sizes once smaller settlements are included in the analysis.

Our suggested functional form for the overall CSD is the DPLN distribution, which has been

first introduced by Reed (2002) and is further discussed by Reed and Jorgensen (2005). It has the

following density function for city sizes S:

f(S) =
αβ

α + β

[
Sβ−1e

(
βµ+β2σ2

2

)
Φc

(
ln(S)− µ+ βσ2

σ

)
+ S−α−1e

(
αµ+α2σ2

2

)
Φ

(
ln(S)− µ− ασ2

σ

)]
.

(1)

In (1), the Φ is the cumulative and Φc the complementary-cumulative standard normal distribution.

The genesis of the DPLN is discussed in detail in the next section. For the moment, it suffices to

note some basic properties. It is a four-parameter distribution (α, β, µ and σ) featuring a lognormal

shape in the body and power laws in the tails. More specifically, if S → ∞ then f(S) ∼ S−α−1,

and if S → 0 then f(S) ∼ Sβ−1. The slope parameters of the Pareto tails are thus α and β, while

the parameters µ and σ pertain to the location and scale of the LN body. In logarithmic scale, the

DPLN can be skewed and its kurtosis can have positive or negative excess, that is, it can be more

peaked (leptokurtic) or more flat (platykurtic) than the LN.

Figure 1: Kernel density estimates and fitted LN + DPLN distributions

It is straightforward to estimate the parameters of the DPLN as given in (1) by maximum

likelihood (see Table 1 for the estimation results).8 We depict the fitted DPLN distributions

in Figure 1 as the dashed black lines. As can be seen, the DPLN provides a very close fit to

8We utilize the log-likelihood function and the corresponding starting values as proposed by Reed (2002).
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the empirical CSD for both definitions of US cities. Certainly the DPLN does a better job than

the LN. For the area clusters this is self-evident by visual inspection. For the Census places,

the performance difference is less pronounced. Still, the DPLN clearly fits better than the LN.

Importantly, this is also true when taking into account that the DPLN is a more flexible function

form with two more parameters. This improvement can be seen from the Akaike (AIC) and the

Bayesian information criterion (BIC), which are also reported in Table 1. Both clearly favor

the DPLN over the LN parametrization. Standard statistical specification tests convey the same

message: for both data sets, the LN is rejected much earlier than the DPLN.9

Table 1: Data and estimated parameters

Area clusters Places

N 23,499 25,359

coverage 0.96 0.74

Min 1 1

Max 15,594,627 8,008,278

DPLN LN DPLN LN

α 1.659 - 1.221 -

β 1.830 - 2.821 -

µ 8.370 8.427 6.813 7.277

σ 0.155 0.911 1.514 1.753

AIC 450,996 458,347 469,430 469,550

BIC 451,028 458,363 469,463 469,566

ln(Lij) -225,493.9 -229,171.3 -234,711.2 -234,773.1

Legend: N is the number of data points (cities), coverage is the percentage of the total US population represented

by the data set. Min and Max are the population size of the smallest and the largest settlement. Parameters are

estimated with maximum likelihood. ln(Li
j) is the log-likelihood of distribution j = LN ;DPLN for the respective

dataset. The Akaike information criterion for dataset i and distribution j is computed as AICi
j = 2kj − 2ln(Li

j),

and the Bayesian information criterion as BICi
j = kj · ln(N i)−2ln(Li

j), with kj denoting the number of parameters

of distribution j. Both criteria favor the distribution j that yields the lower value.

9We have performed Kolmogorov-Smirnov tests by drawing 1000 random samples of size 1000 from both datasets,

and for the two hypothesized parametrizations. Using the area cluster (Census places) data we obtain an average

p-value of 0.34 (0.41) for the null that the data follows the DPLN. For the null that the data follows the LN we get

a p-value much below 0.001 for both datasets. We hence cannot reject the DPLN, while the LN is strongly rejected.
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2.3 Discussion

Summing up, the DPLN is a better approximation of the empirical US city size distribution than

the LN parametrization, also in terms of ”adjusted fit”. The better performance of the DPLN also

holds for other countries. Giesen, Suedekum and Zimmermann (2010) analyze the CSDs of seven

other economies, using data on administratively defined cities comparable to the Census places.

Using various model selection tests, they show that the DPLN outperforms the LN in terms of

adjusted fit for almost all countries (the only exception is Switzerland). However, they do not

explain why DPLN distributed city size should emerge in an urban system. The theory developed

in this paper provides such an explanation.

An additional empirical contribution of this paper is to show that the superior fit of the DPLN

also holds for the recently developed US area clusters data which were not included in Giesen et

al. (2010). For this data, the LN provides a poor fit even in absolute terms while the DPLN fits

nicely. This evidence, moreover, complements Rozenfeld et al.’s (2011) findings. They only focus

on the upper tail of the size distribution, and find that Zipf’s law performs well there. They do not

suggest an appropriate functional form for the overall size distribution across all clusters, however.

Our findings show that the DPLN performs well in that respect, and this is fully consistent with

Rozenfeld et al.’s (2011) evidence for Zipf’s law among large clusters.10

Finally, the DPLN also outperforms other parametrizations that have been suggested. In

particular, Ioannides and Skouras (2013) suggest a mixture of LN and Pareto as the appropriate

functional form for the overall CSD, and estimate several versions of it using the US Census places

and area clusters data. However, while their ad hoc parametrizations fit better than the LN,

they deliver a worse fit for both data sets than the DPLN.11 In addition, Gonzáles-Val, Sanz and

Ramos (2013) compare the DPLN and three other parametrizations for the overall CSD, using

data from Italy, Spain and the US. They find that the DPLN consistently delivers a better fit than

the competing distributions in all three countries.

3 The model

We now turn to the theory and explain why the DPLN distribution for city sizes may emerge. This

explanation rests on the nexus of city age and city size. Before we describe our dynamic economic

10Rozenfeld et al. (2011) also provide data for area clusters in Great Britain. We have used that data as well,

and obtained the consistent result that the DPLN provides a very good fit while the LN fits poorly. Detailed results

for the case of Great Britain are available upon request.
11This can be immediately seen by comparing their Table 1 with our Table 1 above. For the LN distribution we

obtain exactly the same results as they do, since we have used the same data. Comparing the log-likelihood, the

AIC and the BIC for their parametrizations with our values presented above, it follows that the DPLN is more

successful in matching the empirical CSDs than their ad hoc mixture model.
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model in Section 3.2., it is useful to first discuss some background about the stochastic foundations

of CSDs in an urban system.

3.1 Background

Gibrat’s law states that the growth rate of a city is independent of its current size. In this

subsection, we first describe what this implies for the stochastic evolution of the size of a single

city, and then turn to the overall city size distribution in the economy.

Let S(i, t) be the size of city i at time t, and let ε(i, t) = Ṡ(i, t)/S(i, t) denote the population

growth rate between t and t + dt. The “pure” Gibrat’s law is satisfied in continuous time when

ε(i, t) follows a geometric Brownian motion of the following form:

ε(i, t) = γ · dt+ ς · dB(i, t), (2)

where B(i, t) is a Wiener process, γ ≥ 0 is the positive drift, and ς > 0 is the variability of this

stochastic urban growth process.

Assume that the initial size of city i in logarithmic scale at the time of birth, ln S(i, 0), is drawn

from some distribution with finite mean s0 > 0 and variance σ2
0 ≥ 0. Now move ahead in time and

consider the probability distribution for the size of that city at time T . It follows from the central

limit theorem and standard Itô calculus that the (log) size of that city in T can be described by

the following size probability distribution:

ln S(i, T ) ∼ N
(
s0 + µt(T ), σ2

0 + σ2
t (T )

)
, (3)

with: µt(T ) =
(
(γ − ς2/2) · T

)
and σ2

t (T ) = ς2 · T. (4)

The expected size of a city, conditional on its age T , is thus E[S(i, T )] = exp(s0 + σ2
0/2 + γ · T ).

Provided γ > 0, this shows that older cities are larger on average since they had longer time to

grow under the process specified in (2). The conditional variance of city sizes is also larger for

older cities, since they were exposed to random shocks for a longer time.

Turning to the country’s overall CSD in a given point in time, this is the mixture of the size

probability distributions of all cities that exist at that time. Suppose for the moment that all cities

have the same age T = T . In that case, it is easy to see from (3) and (4) that all city-specific

size probability distributions are LN with the same parameters s0 + µt(T ) and σ2
0 + σ2

t (T ). The

overall CSD that results from a mixture of these identical distributions is then itself also LN with

parameters s0 + µt(T ) and σ2
0 + σ2

t (T ). For the more general case with age heterogeneity across

cities and strictly positive drift in the stochastic growth process, however, the overall CSD is not

a LN but a mixture of different LNs with parameters dependent on the city’s age.12

12Stated differently, the conditional CSD across all cities with the same age T is a LN when urban growth follows

Gibrat’s law as in (2). However, the unconditional CSD across all cities is in general not a LN.
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In fact, the overall CSD in a given point in time, f(S), can be written as the Riemann-Stieltjes

integral of the LN with respect to the distribution of the mixing parameter T . Let this distribution,

which in our context is the city age distribution, be denoted by g(T ). We then have

f(S) =

∫
LN

(
S; s0 + µt(T ), σ2

0 + σ2
t (T )

)
dg(T ). (5)

For particular cases of the distribution g(T ) this integral in (5) can be solved analytically. In

particular, assume that the mixing parameter T is exponentially distributed with shape parameter

λ, that is, g(T ) = exp(T ;λ). As is shown by Reed (2002, 2003), the DPLN as given in (1) is then

the solution for this density function f(S) (see the appendix for details).

Under which conditions would the city age distribution g(T ) follow an exponential form? In a

dynamic context, this arises if the mass (the “number”) of cities is increasing at a constant rate,

where this rate λ is, in turn, the shape parameter of the exponential. To see this, let the number

of cities existing at time t be denoted as N(t) = N0e
λt, so that the cumulative distribution of

the birth year τ can be calculated as P (Y ≤ τ) = Nτ
Nt

= eλτ−λt. The age T of a city is then

defined as T = t − τ , and using Z = t − Y , the cumulative age distribution is thus characterized

by P (Z ≤ T ) = 1 − e−λ(T ). The shape of the city age distribution g(T ), and hence the shape of

the resulting asymptotic size distribution f(S), are therefore determined by the (constant) city

creation rate λ. In particular, it can be shown (see the appendix) that the slope parameters of the

DPLN (α and β) are increasing in λ, so that the CSD has fatter tails the lower λ is. Intuitively, if

λ is very low, the upper tail of the CSD is dominated by a small number of very old cities which

tend to be very large. Vice versa, the higher λ is, the thinner is the upper tail of the DPLN since

the age heterogeneity across cities is lower.13

Notice further that an exponential city age distribution does not require sustained growth

in the mass of cities. Consider, for example, a scenario where the number of cities first grows

exponentially in an early phase of history (say, for t < t̂), but city creation then stops at t = t̂

and the number of cities stays fixed afterwards. Such a scenario seems to roughly match the

experience of many European countries with mature urban systems. In such a case, the city age

distribution g(T ) is still a shifted exponential distribution,14 and the mixing of the city-specific

size probability distributions works analogously in that case. City sizes f(S) thus still converge to

a DPLN distribution, although absolute size differences between cities fan out by the variance of

the growth process in (2).

13In the limit with λ → ∞, all cities have the same age and the DPLN turns to a LN. The scenario studied

by Eeckhout (2004) corresponds to this case with a degenerate age distribution g(T ) = T . In addition, γ = 0 is

assumed in his framework. In that case, even if there were age heterogeneity, there would be no positive correlation

between city age and expected city size although older cities would have a higher variance in their size probability

distributions. In Section 4 we provide empirical evidence that age and size are positively correlated across US cities.
14There are no cities younger than T̂ = (t− t̂) at t, while age is exponentially distributed for cities older than T̂ .
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Summing up, there are two important insights to bear in mind for an urban system where the

pure Gibrat’s law with positive drift (the growth process in (2) with γ > 0) holds:

1. The urban system only converges to an overall CSD with LN distributed city sizes if there

is no city creation and all cities have the same age.

2. The urban system converges to an overall CSD with DPLN distributed city sizes if cities are

created at a constant rate (at least up to some point in time), so that the city age distribution

is described by a (shifted) exponential.

For other city creation dynamics, a different age distribution g(T ) would result. In such a

case, one can typically not obtain an analytical expression for the respective asymptotic city size

distribution f(S) from (5), see Section 4.3 for further discussion of this issue.

3.2 An urban system with endogenous city creation

We now develop an economic model of an urban system. Our starting point is a continuous time

version of the urban growth framework by Eeckhout (2004). We extend that model to incorporate

exogenous population growth and technological progress, as well as endogenous city creation.

Basic setup Consider an economy with a total population S(t) that is growing at the exogenous

rate gS > 0. The economy consists of a continuum of N(t) locations/cities at time t. Firms

produce a perfectly tradeable commodity using labor only, and operate under perfect competition.

The wage w(i, t) is equal to the marginal product of labor in location i and time t and depends

positively on the city’s overall productivity A(i, t) and on the current city size S(i, t). The positive

effect of S(i, t) on w(i, t) represents a localized agglomeration externality. At the same time, within

each city, agents consume land and have to commute to work, thereby losing effective working time.

This represents a negative size externality from congestion: land prices are higher, and more time

is lost for commuting in larger cities. For simplicity, we consider the same functional forms for the

localized externalities as used in the baseline model by Eeckhout (2004). Indirect utility in city i

at time t can then be written as

V (i, t) = Φ
(
A(i, t) · S(i, t)−Θ

)α
, (6)

where α, Θ, and Φ are positive parameters that are the same across cities and time. Note that

utility V (i, t) is decreasing in the local population size S(i, t).

With respect to productivity A(i, t), we assume that locations are hit by idiosyncratic and

permanent i.i.d. shocks. More specifically, we assume a Brownian motion

Ȧ(i, t)

A(i, t)
= εA(i, t) = gA · dt+ ςA · dB(i, t). (7)
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The positive drift gA > 0 captures the expected productivity growth in the economy, while ςA > 0

is the variability of this stochastic growth process. The term A(i, t) in (6) then reflects the history

of productivity shocks in city i up to time t, and V (i, t) is increasing in A(i, t). That is, utility is

higher in cities with higher accumulated productivity.

A few comments are in order about this basic setup. First, the negative size externality domi-

nates at the city level. Hence, as in Eeckhout (2004), our model does not feature a U-shaped net

agglomeration curve á la Henderson (1974). Notice, however, that this is not overly restrictive

since Henderson (1974) has shown in his seminal paper that all cities must be located on the

downward-sloping range of that curve in order for a spatial equilibrium (with two or more cities)

to be stable. Our model therefore can be thought of as a parsimonious specification for such a

constellation. Notice, further, that wages and productivity are still higher in larger cities, ceteris

paribus, which is due to the positive agglomeration externality and consistent with abundant evi-

dence on the urban wage premium (Glaeser and Marè, 2001). Second, as Gabaix (1999), Eeckhout

(2004), Rossi-Hansberg and Wright (2007), and others, our model does not take a stance on the

nature of the random productivity shocks. Our specification may provide a short-cut for a variety

of micro-foundations, however, such as changes in localized production amenities, technological in-

novations causing relocation of firms, city-specific productivity realizations for particular matches

of firms and workers, and so on. Finally, as in those and most other models from the urban growth

literature, we do not explicitly analyze where in space the cities are located.15 Yet, when consid-

ering the birth of new cities below, we assume that cities starts off from a randomly drawn initial

productivity. This initial productivity may reflect (at least implicitly) some deep characteristics of

the city’s location (Bleakley and Lin, 2012). Thereby we allow geographical factors to play some

role, although we do not consider a screening of potential locations for suitability of city creation.

Spatial equilibrium Workers are freely mobile so that indirect utility is equalized across all

cities at each point in time. Using the property that V (i, t) = V (j, t) for all i and j, it can be

shown (see Giesen 2012) that the economy-wide indirect utility level in the spatial equilibrium is:

V ∗(t) = Φ
(
A(t) · S(t)−Θ

)α
, where A(t) =

(∫ N(t)

i=0

A(i, t)1/Θdi

)Θ

(8)

The equilibrium size of a single city then reflects its relative productivity level, S(i, t)∗/S(t) =

(A(i, t)/A(t))1/Θ, and it immediately follows from this relationship that Gibrat’s law holds since

A(i, t) evolves randomly around the common trend gA. Furthermore, it follows from (8) that

V (t)∗ is decreasing in S(t). If more workers have to be fitted into a fixed set of cities, city sizes

would rise proportionally and all individuals end up worse off because of the pervasive negative

size externality. Since the total population grows at the rate gS > 0, welfare would thus decrease

15See Hsu (2012) for a recent model that addresses the spatial dimension of the CSD.
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over time, ceteris paribus. Vice versa, V (t)∗ is increasing in A(t). Expected productivity growth

gA > 0 thus raises welfare over time, ceteris paribus, since it increases wages everywhere.

Endogenous city creation and growth in new cities The formation of new cities in an

urban system has been analyzed ever since the classical contributions by Henderson (1974) and

Fujita (1978). Those contributions have shown that decentralized market allocations are typically

characterized by an inefficient number of cities with inefficient sizes, and triggered a series of papers

which analyze different arrangements how the involved externalities can be internalized. Those

aspects are not the focus of this paper, but our main interest is the city age distribution that

arises endogenously from the dynamics of city formation. As our benchmark, we therefore take the

simplest possible approach and consider a forward-looking social planner who creates the efficient

number of cities over time. Below we then briefly discuss also other mechanisms for city creation.

Assume there is a large amount of featureless land where the planner can form cities. The

creation of every new city imposes sunk resource costs F for developing infrastructure, the housing

stock, and so on, that are borne by the currently alive population.16 Whenever the planner creates

a new city, its initial productivity Ai,0 is drawn from some distribution with finite mean A0 > 0

and variance σ2
A0 > 0. As said before, this Ai,0 may reflect, in a stylized way, some deep location

characteristics. Afterwards, productivity in those new cities evolves just as in any other city,

namely, according to the Brownian motion (7).

At the time of creation, a new city is initially empty and, hence, offers very high utility. There

is inflow of population from the established cities until a new spatial equilibrium is reached. This

induced inflow is stronger, the higher is the realization of Ai,0. That is, the city’s starting size Si,0

reflects its initial productivity draw, and the new city exhibits strong growth during the transition

towards this starting size. In the model, this transition works instantaneously because of free

mobility. If the transition would require some time, which is likely to be the case in reality, young

cities would then initially exhibit very high growth rates in their early times. Eventually though,

they revert to the growth rate of the established cities. Such a pattern, where Gibrat’s law holds

in the long run but where young cities (which tend to be relatively small) initially grow faster, is

consistent with recent empirical evidence on US urban growth over the last two centuries.17

Social planner’s problem Let x(t) denote the mass of cities that the planner creates between t

and t+dt, which adds to the stock of existing cities N(t). The formation of every new city raises the

country’s normed productivity A(t) and equilibrium utility V (t), since the population can spread

across more cities. Specifically, using (8), equilibrium utility can be rewritten as V (t)∗ = Φ ·Ω(t)αΘ

where

16If city formation were costless, the planner would create an infinite number of infinitely small cities.
17See, in particular, Desmet and Rappaport (2012) and Gonzáles-Val et al. (2012).
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Ω(t) =

∫ N(t)

i=0
A(i, t)1/Θdi

S(t)
. (9)

This state variable evolves according to

Ω̇(t) =

(
(1 + gA)1/Θ

1 + gS
− 1

)
Ω(t) +

x(t) · A1/Θ
0

S(t)
. (10)

The first term in (10) entails the exogenous growth rate of the (transformed) equilibrium utility

for a fixed set of cities, which is increasing in gA and decreasing in gS. The (positive) second term

is the expected benefit from developing new cities.

The forward-looking planner chooses the time-path of city creation x(t) in order to maximize

overall welfare, taking into account the real resource costs of city creation. The present-value

Hamiltonian of this dynamic problem can be written as follows,

H(t) = e−(ρ−gS)·t
(
V (t)∗ − x(t) · χF

S(t)

)
+ λ(t) · Ω̇(t), (11)

where ρ > gS > 0 is the time discount rate, χ is the marginal utility of income that is assumed fixed,

and λ(t) is the costate variable. The planner maximizes (11) subject to the transition equation

(10) and x(t) ≥ 0. This is a standard optimal control problem, and it can be shown that the

planner creates cities so as to smooth utility over time. It becomes V ∗ = Φ · Ω∗ α Θ, where

Ω∗ =

(
αΘΦ · A1/Θ

0

χF
· 1 + gS

(1 + ρ− gS)(1 + gS)− (1 + gA)1/Θ

) 1
1−αΘ

(12)

The time path of city creation is then given by

x∗(t) = egS ·t ·

[(
1− (1 + gA)1/Θ

1 + gS

)
· S0

A
1/Θ
0

]
· Ω∗ (13)

The condition x∗(t) ≥ 0 requires that (1 + gA)1/Θ < (1 + gS), i.e., population growth must be

sufficiently strong relative to exogenous productivity growth. We assume that this is the case. It

then follows from (12) and (13) that the mass of created cities is higher at every point in time the

higher is gA and the lower is F . Most importantly, it follows from (13) that ẋ(t)/x(t) = gS.

In other words, the planner creates cities at a constant rate, namely the country’s population

growth rate. Productivity growth gA positively affects the level of city creation, but not its growth

rate. Finally, when the mass of new born cities increases at a constant rate, so does the total

number of cities. Specifically, we have Ṅ(t)/N(t) = x(t)/N(t) which becomes e(t·gS)

e(t·gS)−1
·gS and thus

(quickly) converges to gS.
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City age and city size distribution The efficient number of cities thus increases at a constant

rate in our urban system. The planner chooses this time path of city creation in view of the constant

growth of the economy’s total population, since the creation of new cities avoids crowding in the

established cities and thereby leads to utility smoothing for all generations over time.

As shown before, this constant growth in the mass of cities endogenously leads to an exponential

city age distribution, g(T ) = exp(T ;λ), where λ = gS in our model. Moreover, since population

growth among established cities obeys to the pure Gibrat’s law, as they are hit by idiosyncratic

productivity shocks, city sizes will thus converge to a DPLN distribution: The city-specific size

probability distributions follow a LN because of Gibrat’s law, with mean and variance increasing

by the city’s age T . These city-specific distributions are then mixed according to the exponential

age distribution, which in turn leads to the DPLN distribution for city sizes (see Section 3.1). The

lower is gS, the more characteristic is the DPLN shape and the fatter are the tails of the CSD.

Recall that the DPLN would also emerge if the city age distribution were a shifted exponential.

That age distribution would result in our model if the population grows at the rate gS > 0 for t < t̂,

but when growth unexpectedly stops at t̂ and the overall population remains constant afterwards.

Then, at t̂, the planner stops creating cities so that their total mass remains fixed from there on.

Decentralized city creation Notice that a city is a pure public good in our model. Hence, a

single individual has no incentive to invest in the formation of new cities. To see this, suppose

that city creation is decided upon in a fully decentralized fashion. Let xj(t) denote the mass of

cities created by some individual j, and x−j(t) the mass of cities created by others. The optimal

control problem for individual j can then be described by the following Hamiltonian:

Hj(t) = e−(ρ)·t (V (t)∗ − xj(t) · χF ) + λ(t)

[
gO · Ω(t) +

A
1/Θ
0 [xj(t) + S−j(t)x−j(t)]

S(t)

]
(14)

where gO =
(

(1+gA)1/Θ

1+gS
− 1
)

and S−j(t) ≈ S(t) is the population size except for j. A single

individual thus bears the full costs of city creation, but shares the benefits with all others due to

free mobility. It is straightforward to show from (14) that xj(t) = x−j(t) = 0, so that the total mass

of cities stays fixed at some initial level N0. This extreme underinvestment results from a standard

free rider problem, which even becomes more severe over time as the population is growing.

This inefficiency of the decentralized market allocation can be addressed in various ways. For

example, there may be a government which coordinates the city formation process by collecting

taxes that are spent on the development costs. It is beyond the scope of this paper, however, to

analyze the details of such institutional arrangements to implement the efficient allocation.18 We

just suffice with pointing out that, with an appropriately designed policy scheme, constant growth

in the mass of cities would also result as an equilibrium outcome in the urban system.

18See Henderson and Venables (2009) for a recent analysis of related issues in a dynamic context.
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Summing up, in our urban system (constant) population growth induces (constant) growth in

the number of cities, and hence age differences between cities. Such a result can, supposedly, also

be derived from many alternative urban models that do not share the specificities of our simple

framework. Importantly, these dynamics of city creation, in turn, generate an exponential city age

and a DPLN city size distribution which has been the main goal for our theoretical analysis.

4 City age and city size in the US urban system

In this final section we empirically address age heterogeneity across American cities. Thereby we

provide evidence for the key new building block of our model, and we discuss this evidence in the

light of our theoretical approach.

Although little is known so far about the number or the age structure of cities in an economy,

we are not the first to address those issues. Among the few existing papers are Dobkins and

Ioannides (2001), Henderson and (2007), Gonzáles-Val et al. (2012) and Desmet and Rappaport

(2012). These studies clearly show that the number of cities has grown over time, which implies

that cities differ by age. However, Dobkins and Ioannides (2001) and Henderson and Wang (2007)

only include cities in their analysis that are larger than a certain threshold size. Their information

thus refers to the date when the city’s size has crossed the threshold, but not to the city’s actual

creation. Desmet and Rappaport (2012) and Gonzáles-Val et al. (2012) comprehensively count the

number of all US counties or, respectively, Census places that exist in a given time, thereby giving

a more comprehensive picture of city ages in the US.19 However, they focus on age-dependent

patterns of urban growth as discussed before, but do not address the correlation of city age and

the current city size which is one of our main aims.

4.1 Data

Our data traces the actual foundation dates of American cities, which correspond in their definition

to the US Census places, so that the city age data is compatible with the previously used city size

data for the year 2000.20 Among historians, there is no agreement on the precise meaning of the

term “foundation date” for a city. Some claim it to be the date when the first settlers arrived

at the site, when the deed for the land was granted, or when the first building was completed.

However, such dates are typically unknown. As the birth date of the respective US Census place,

we therefore consider the foundation date of the administrative municipality, that is, the earliest

date of self-government or incorporation.

19Desmet and Rappaport (2012) use data for US counties and find that their number has increased from about

300 in 1800 to more than 3,000 in the year 2000. Gonzáles-Val et al. (2012) report that the number of incorporated

Census places has increased from 10,496 to 19,211 in the period 1900–2000.
20Explicit information about the history of the area clusters is, unfortunately, not available.
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We use data from the commercially sold Cities DatabankTM that has extensively collected

this information, drawing on official sources including legal citation of a law, court order, county

commission order, or city charter, as well as by examining standard library citations for an original

published source, or a legally designated source or repository, and the laws of each legislative

session of each territory, colony and State.21 The data base, in total, includes 10,417 US Census

places, together accounting for around 148 million citizens, roughly half of the total US population

in 2000.22 For the vast majority of cases (> 99%), the foundation date refers to the earliest

incorporation or self-governing date of the respective place.23 In a few instances, a merger or a

consolidation of several Census places to a single one occurred. In those cases, we use wherever

possible the incorporation date of the oldest involved place. For example, the foundation of New

York (2/12/1654) refers to the first date of self-government of a legislative body in the city. The

consolidation of the boroughs Manhattan, Brooklyn, Richmond (Staten Island), Queens and Bronx

to the Greater New York Area, the currently defined Census place, only occured in 1898 which

would not be an appropriate description of the city’s foundation.24 We exclude 15 cities where

the foundation date is given by a later than the first incorporation, or where an unclear merger

happened. Thereby we end up with 10,402 Census places for which we have reliable information

on their foundations.

4.2 Empirical analysis

Table 2 gives a first overview and reports the birth dates of some selected US cities. The oldest

ones – including Boston – were 370 years old in the year 2000. The youngest cities have just been

founded at that time. Among the largest US cities, New York is the oldest with age 346, while

Chicago, Houston and Los Angeles are in the middle of the spectrum with ages between 150 and

166 years in the year 2000. Las Vegas has been founded more than 250 years later than New York.

21To the best of our knowledge, this data set has not been analyzed in the economics literature so far.
22This sample is representative for the universe of all US Census places considered above. The sample’s smallest

city has 6 inhabitants in 2000, so even the very small places are included. Furthermore, it can be shown that

the CSD among those cities looks very similar to the overall CSD across all Census places, and that the DPLN

distribution delivers a better data fit than the LN also for this sub-sample of cities.
23Incorporations under colonial law were often limited by the terms of the royal charter of the colony. Some cities

were also initially chartered by the British or Dutch crowns, by the royal governor of the colony, or by the colonial

legislature. In such cases, the earlier charter date is used as the foundation date if self-government was provided to

the city. An example is Boston, which has been self-governing since 1630 but was incorporated only in 1822.
24There are two further data issues concerning border modifications over time. First, in the case of small annex-

ations that did not significantly change the appearance of the annexing place (e.g., a large Census place A swallows

a small one B), we use the initial foundation of the surviving place A. Second, in the very rare event where one

place A is divided into several ones, we use the date of division as the birth date of the resulting places B and C.
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Table 2: Age and size of some selected US cities

City (Census Place) Foundation date Population size in 2000

1 Watertown, MA 9/17/1630 32,986

2 Boston, MA 10/29/1630 589,141

3 Hampton, NH 4/19/1639 14,937

... ... ... ...

12 New York City, NY 2/12/1654 8,008,278

... ... ... ...

56 Philadelphia, PA 11/8/1701 1,517,550

... ... ... ...

1,830 Chicago, IL 8/12/1833 2,896,016

... ... ... ...

2,181 Houston, TX 6/5/1837 1,953,631

... ... ... ...

2,999 Los Angeles, CA 4/4/1850 3,694,820

... ... ... ...

8,468 Las Vegas, NV 3/16/1911 478,434

... ... ... ...

10,400 Fountain Lake, AR 07/26/1999 409

10,401 Sammamish, WA 8/31/1999 34,104

10,402 Palm Coast, FL 12/31/1999 32,732

Legend: Table reports the foundation date and the population size in 2000 of selected US Census Places. Foundation

dates are taken from the Cities DatabankTM and refer to the earliest date of incorporation or self-government of

the municipality. Data collection ends as of 12/31/1999.

In Table 3 we summarize some features of the US city age distribution. The data clearly shows

the development of the country from the East to the West. The average age of US cities in 2000

was 125.7 years. Cities in the “frontier” States in the South-West and West are on average much

younger than that, however, while cities in the more traditional States in the Mid-West and along

the East Coast (particularly in New England) are older. This is shown in the second and third

row, where we divide the US into those two parts. Table 3 also shows differences in the shape of

the city age distribution across the two groups of US Federal States. The distribution is positively

skewed among the cities in the traditional States, while it has negative skewness in the frontier

States. This is also shown in Figure 2, where we graphically illustrate the city age distributions.

In the traditional US States, only few cities are younger than 100 years old in the year 2000. The

distribution exhibits a peak in the range between 110-120 years, and then has some very old cities

to the far right in the upper tail. In the frontier States, on the other hand, the bulk of cities is

younger than 100 years, and only few are older than 150 years. The shape of the age distribution

for the US as a whole resembles the one in the traditional States, with the young cities from the

frontier States showing up in the lower tail.
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Table 3: City age distribution and correlation between age and size

number of cities mean age std. deviation skewness age-size correl.

ALL 10,402 125.7 49.49 .385 0.571∗∗∗

traditional States 8,008 136.3 47.67 .463 0.593∗∗∗

(East Coast & Mid-West)

frontier States 2,394 90.2 37.50 -.319 0.546∗∗∗

(West & South-West)

Legend: Table reports the number cities, mean age, standard deviation and skewness of the age distribution of

US Census places. Foundation dates are taken from the Cities DatabankTM and refer to the earliest date of

incorporation or self-government of the municipality. The last column reports the correlation between log age (in

years as of 2000) and log population size in 2000, controlling for Federal State fixed effects to account for State-

specific differences in incorporation laws. The second row refers to cities from the following States: AL, CT, DE,

FL, GA, IA, IL, IN, KY, MA, MD, ME, MI, MN, MO, MS, NC, NH, NJ, NY, OH, PA, RI, SC, TN, VA, VT, WI,

WV. The third row refers to cities from the following States: AK, AR, AZ, CA, CO, HI, ID, KS, LA, MT, ND,

NE, NM, NV, OK, OR, SD, TX, UT, WA, WY.

Figure 2: US city age distribution (kernel density)
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Finally, recall from the previous section that a positive correlation between city age and city

size plays an important role in the genesis of the DPLN city size distribution. As can be seen

in Table 3, this positive correlation is strongly empirically supported both for the traditional and

the frontier States.25 The elasticity of current city size with respect to city age is estimated to be

0.571 for the US urban system as a whole, and is highly statistically significant. That is, doubling

the age of a city is – on average – associated with an increase of the city’s current population size

by about 57%. In the traditional States, the elasticity is a bit higher (0.593) and in the frontier

States it is a bit lower (0.546), but in both cases there is a notably positive and highly significant

relationship between city age and city size in the data.

25In the log size-log age regression we have controlled for Federal State fixed effects, in order to take into account

State-specific differences in historical incorporation legislations which affect the measured city foundation dates.
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4.3 Discussion

Using the novel US city age data, we thus find empirical support for several features and predictions

of our theoretical model. There is vast age heterogeneity across American cities, and older cities

tend to be larger than younger ones. The country’s overall distribution of city sizes is, therefore,

also affected by the city age profile in the economy. Evidence is more mixed when it comes to the

precise functional form of the city age distribution. Our model shows that the DPLN distribution

for city sizes emerges when city ages follow a (possibly shifted) exponential distribution. As can

be seen in the left panel of Figure 2, such an exponential shape may not perfectly fit the city age

data, mainly because of the mass of young cities in the lower tail. However, it can be argued that a

shifted exponential still yields a reasonable approximation. The empirical age distribution roughly

starts at a minimum city age of around 100 years, and is then clearly right-tailed as indicated

in Table 3. Those features are in line with the parametrization of a shifted exponential, which

delivers a decent approximation of the city age data particularly for the cities in the mature part

of the US urban system (see middle panel of Figure 2).

Notice that those deviations are not necessarily a refutation of our theoretical model. We have

shown that constant growth in the mass of cities (and hence, a pure exponential shape of g(T ))

would result as the efficient allocation in an urban system with constant population growth up to

some point in time. Irregularities in the dynamics of population growth, or failures in the policy

scheme applied to implement the social optimum as the decentralized market allocation, would

also distort the shape of the city age distribution. The resulting CSD would then also not be the

DPLN, but something more complex.

One possible strategy could be to estimate a distribution g̃(T ) that closely matches the city age

data, and then to mix age-specific LN size probability distributions as in (5), under the assumption

that the mixing parameter T is distributed according to this function g̃(T ). The disadvantage of

such an approach, however, is that an analytical expression for the resulting size distribution f̃(S)

is then, in general, no longer available and f̃(S) can only be obtained via simulation.

The DPLN, by contrast, can be solved in closed form, and it can be readily taken to the

data by using standard methods. As shown in Section 2, it achieves a considerable edge over

the LN and other parametrizations in terms of data fit to the empirical CSD, yet without being

computationally much more difficult to handle. This advantage would disappear when both the

age distribution g̃(T ) and the resulting asymptotic city size distribution f̃(S) have to be simulated.

We therefore believe that our theory-based approach to derive the DPLN distribution for city sizes

is more attractive than a pure simulation approach, even if the exponential city age distribution

does not fit the empirical age data perfectly.
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5 Conclusions

Recently, there has been a lively discussion about city size distributions. Our research can poten-

tially resolve several controversial issues from this literature. First, our results show that the same

functional form – the DPLN distribution – closely approximates the empirical city size data, re-

gardless of whether cities are economically or administratively defined. Second, the DPLN unifies

the lognormal distribution suggested by Eeckhout (2004) and the Pareto distribution (Zipf’s law)

advocated by Gabaix (1999), Rozenfeld et al. (2011), and many others, in a single framework of

an urban system, thereby building a bridge between those two views.

The main aim of this paper was to provide economic foundations where this DPLN distribution

of city sizes comes from. One crucial building block is age heterogeneity across cities, which emerges

in our model as a growing population allocates over an endogenously determined set of locations.

A second important feature is the positive correlation of city age and city size. Finally, the model

predicts that cities grow with the same expected rate in the long run (Gibrat’s law), but that

young cities may grow faster in the beginning. As we show in this paper, these building blocks

of the DPLN size distribution are all empirically relevant. In particular, using novel data on the

foundation dates of American cities, we indeed find strong age differences, and that older cities in

the US tend to be larger than younger ones.
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Appendix A: Genesis of the DPLN

Instead of directly deriving the density function of the DPLN by solving the Riemann-Stieltjes

integral given in (5), one can make use of the respective moment generating function (mgf). Reed

(2002) shows the mgf of a city with distribution according to equation (3) and age T is given by

Mlog(ST )(θ) = exp

(
s0θ + σ2

0θ
2 +

((
γ − ς2

2

)
θ +

θ2ς2

2

)
· T
)

(15)

and the corresponding mgf of the overall distribution, under which T is also a random variable, is

Mlog(S)(θ) = exp

(
s0θ +

σ2
0θ

2

)
·MT

((
γ − ς2

2

)
θ +

θ2ς2

2

)
. (16)

Under the assumption that T follows an exponential distribution, the mgf of time becomes MT (θ) =
λ
λ−θ and therefore

Mlog(S)(θ) =
exp

(
s0θ +

σ2
0θ

2

2

)
λ−1

(
λ−

(
γ − ς2

2

)
θ − ς2

2
θ2
) , (17)

which can be simplified by using a partial decomposition (see Appendix B) to

Mlog(S)(θ) = exp

(
s0θ +

σ2
0θ

2

2

)
· αβ

(α− θ)(β + θ)
. (18)

This shows that the distribution of log(S) is the convolution of a normal distribution with an

asymmetric Laplace distribution, since exp
(
s0θ + ς2θ2

2

)
is the mgf of a normal distribution and

αβ
(α−θ)(β+θ)

is the mgf of an asymmetric Laplace distribution. The respective distribution of S, as

represented in equation (1), is then obtained by transforming log city sizes to levels.

Appendix B: Specifics of α and β

The parameters α and β are time constant collections of the parameters γ, ς and λ, which govern

the growth process. They are determined in the above partial decomposition of the mgf of the

DPLN, which reduces equation (17) to (18). Therein, the parameters α and −β are the roots of

the characteristic equation (
γ − σ2

2

)
θ +

σ2

2
θ2 − λ = 0

given by

α =
−2γ + ς2 +

√
(−2γ + ς2)2 + 8ς2λ

2ς2
and β =

2γ − ς2 +
√

(−2γ + ς2)2 + 8ς2λ

2ς2
.

As can be seen, α and β are increasing in λ. Therefore, in the limit where λ→∞ this translates

into α→∞ and β →∞ and the DPLN turns to a LN, as the mgf of the DPLN in equation (18)

converges to the mgf of a normal distribution.
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