Düsseldorf Institute for Competition Economics

DISCUSSION PAPER

No 237

Distorted Monopolistic Competition

Kristian Behrens, Giordano Mion, Yasusada Murata, Jens Suedekum

November 2016

IMPRINT

DICE DISCUSSION PAPER

Published by
düsseldorf university press (dup) on behalf of
Heinrich-Heine-Universität Düsseldorf, Faculty of Economics,
Düsseldorf Institute for Competition Economics (DICE), Universitätsstraße 1, 40225 Düsseldorf, Germany
www.dice.hhu.de

Editor:

Prof. Dr. Hans-Theo Normann
Düsseldorf Institute for Competition Economics (DICE)
Phone: +49(0) 211-81-15125, e-mail: normann@dice.hhu.de

DICE DISCUSSION PAPER

All rights reserved. Düsseldorf, Germany, 2016

ISSN 2190-9938 (online) - ISBN 978-3-86304-236-3

The working papers published in the Series constitute work in progress circulated to stimulate discussion and critical comments. Views expressed represent exclusively the authors' own opinions and do not necessarily reflect those of the editor.

Distorted Monopolistic Competition

Kristian Behrens* Giordano Mion ${ }^{\dagger}$ Yasusada Murata ${ }^{\ddagger}$ Jens Suedekum ${ }^{\S}$

November 2016

Abstract

We characterize the equilibrium and optimal resource allocations in a general equilibrium model of monopolistic competition with multiple asymmetric sectors and heterogeneous firms. We first derive general results for additively separable preferences and general productivity distributions, and then analyze specific examples that allow for closed-form solutions and a simple quantification procedure. Using data for France and the United Kingdom, we find that the aggregate welfare distortion - due to inefficient labor allocation and firm entry between sectors and inefficient selection and output within sectors - is equivalent to the contribution of $6-8 \%$ of the total labor input.

Keywords: monopolistic competition; welfare distortion; intersectoral distortions; intrasectoral distortions

JEL Classification: D43; D50; L13.

[^0]
1 Introduction

The first welfare theorem states that market equilibria are efficient under perfect competition in the absence of externalities and other market failures. A laissez-faire market allocation corresponds, in that case, to an optimal allocation that a benevolent social planner would choose. When firms operate in a monopolistically competitive environment, however, the market economy does typically not lead to an efficient outcome.

This insight has a long tradition in the literature, dating back at least to Spence (1976) and Dixit and Stiglitz (1977). More recently, the welfare distortions under monopolistic competition have been revisited by Dhingra and Morrow (2014), Nocco, Ottaviano, and Salto (2014), and Parenti, Ushchev, and Thisse (2016) who argue that the market delivers, in general, the wrong selection of firms and the wrong firm-level outputs from a social point of view. Those analyses have been limited to models with a single monopolistically competitive industry that consists of heterogeneous firms.

Such settings ignore the salient heterogeneity across different sectors that we observe in the data. In France in 2008, for example, there are 4,889 textile and footwear producers, which vastly differ in size and compete for an aggregate expenditure share of 2% by the French consumers. Those firms operate, arguably, in a different market and face different demands than the 4,607 manufacturers of wood products or the 124,202 health and personal service providers, on which French consumers spend less than 0.1% and almost 20% of aggregate income, respectively. ${ }^{1}$

When the economy is represented by heterogeneous sectors consisting of heterogeneous firms, a new margin for misallocations arises: the market may not only allocate resources inefficiently within, but also between sectors in general equilibrium. For example, the textile industry may not only have some firms that produce too little, and others that produce too much from a social perspective. It may also have the wrong overall size, i.e., employ too many (or too few) workers in equilibrium, which in turn means that some other industries may have fewer (or more) workers than is socially optimal. Characterizing those distortions theoretically and quantifying their implied welfare losses are the two objectives of this paper.

To achieve our first goal, we develop a general equilibrium model of monopolistic competition with multiple asymmetric sectors and heterogeneous firms. We build on Zhelobodko, Kokovin, Parenti, and Thisse (2012) and Dhingra and Morrow (2014), who study the pos-

[^1]itive and normative aspects of a single monopolistically competitive industry, respectively. We extend their approach to a multi-sector model and allow the sectors to differ in various dimensions. Imposing standard assumptions on the upper-tier utility function, we establish existence and uniqueness of the equilibrium and the optimal allocations and, by comparing the two, we characterize the distortions that arise in our economy. The latter include inefficient firm selection and output distortions within sectors - as in existing models and inefficiencies in the labor allocation and the masses of entrants between sectors. These intersectoral distortions are the novel feature of our framework.

We derive general results that the revenue-to-utility ratio and the elasticity of the upper-tier utility are crucial for characterizing labor and entry distortions between sectors, and we explain the intuition for those two sectoral statistics in detail below. Contrary to the conventional approach in industrial organization, which has studied single industries in partial equilibrium while ignoring interdependencies between them, we analyze those inefficiencies in a framework that fully recognizes the general equilibrium nature of the problem: there cannot be too many (or too few) workers and entrants simultaneously in all sectors, and the distortions in one sector depend on the characteristics of all sectors in the economy.

Our second goal is to explore the magnitude of entry and selection distortions at the sectoral level, and to assess how large the aggregate welfare loss is from a quantitative point of view. For this purpose we develop two specific parametrized examples of our general model. Those examples allow for closed-form solutions and lend themselves naturally to a simple quantification exercise which only requires data that is easily accessible for many countries.

The first example uses Cobb-Douglas upper-tier and constant elasticity of substitution (CEs) subutility functions. This ubiquitous ces model has dominated much of the literature on monopolistic competition in various fields, and it exhibits some very special properties (Zhelobodko et al., 2012; Dhingra and Morrow, 2014). In particular, from the one-sector model by Dhingra and Morrow (2014) we know that selection and firm-level outputs are efficient if the subutility function is of the ces form. However, in this multi-sector example, distortions in entry and the sectoral labor allocation disappear if and only if the revenue-toutility ratio happens to be identical in all sectors. Otherwise, the allocation is efficient within but not between sectors. ${ }^{2}$

Our second example is a fully tractable model with variable elasticity of substitution

[^2](VEs), where demands exhibit smaller price elasticity at higher consumption levels of a variety. Unlike the ces model, this ves model can account for the empirically well-documented facts of variable markups and incomplete pass-through across firms within industries (e.g., Hottman, Redding, and Weinstein, 2016; Yilmazkuday, 2016). It features all distortions in the allocation of resources within and between sectors that were highlighted in the general framework. In particular, we show that productive firms always produce too little and unproductive firms too much from a social perspective, and that the market delivers too little selection compared to the social optimum. Entry and the labor allocation are also inefficient, and the market allocates too many firms and workers to sectors with a higher concentration of low-productivity firms.

Quantifying the ces and ves models using data from France and the United Kingdom, we obtain four key results. First, there is a substantial aggregate welfare distortion both in France and in the UK. In the multi-sector ves model, it is equivalent to $6-8 \%$ of the total labor input in either country. ${ }^{3}$ Second, intersectoral misallocations are crucial for this aggregate distortion. When we constrain the economy to consist of a single sector, thereby shutting down inefficiencies in entry and the labor allocation, the aggregate distortion can be 30% lower than the one predicted in the multi-sector economy. Put differently, a single-sector model yields downward-biased predictions for the total welfare loss. Third, we find that the multi-sector ces model predicts a much smaller aggregate distortion (of less than 1% in both France and the UK) than the ves model. The intuition is that the ces model displays efficient selection and firm-level outputs by construction. It therefore misses the cutoff and output distortions, which according to our results from the ves model account for an important part of the aggregate welfare loss. Last, at the sectoral level, we find similar patterns of inefficient entry and selection between the two countries. Insufficient entry arises almost exclusively for services, while manufacturing sectors tend to exhibit excessive entry. Manufacturing sectors are, however, more efficient when it comes to selecting the right set of surviving firms from the pools of entrants, i.e., they tend to exhibit smaller cutoff distortions than most service sectors.

Our paper is most closely related to the recent literature that investigates the efficiency of market allocations in models with a single monopolistically competitive sector, most notably Dhingra and Morrow (2014), Nocco, Ottaviano, and Salto (2014), and Parenti, Ushchev and Thisse (2016). 4 We make two contributions: first, our model considers multiple monopolis-

[^3]tically competitive sectors while maintaining general additively separable preferences and productivity distributions. Second, while those papers focus exclusively on theory, we also explore the quantitative importance of various distortions.

Our work is also related to the classic literature in industrial organization that studies welfare implications of market power and inefficient entry for single industries in partial equilibrium. Harberger (1954) is a seminal reference for the former, and Mankiw and Whinston (1986) for the latter aspect. Our monopolistic competition model is complementary to this line of research, and recognizes general equilibrium interdependencies between sectors.

The rest of the paper is organized as follows. Section 2 presents our general model, while Section 3 turns to the specific solvable examples. The quantification procedure and results are discussed in Section 4. Section 5 concludes.

2 General model

Consider an economy with a mass L of agents. Each agent is both a consumer and a worker, and supplies inelastically one unit of labor, which is the only factor of production. There are $j=1,2, \ldots, J$ sectors producing final consumption goods. Each good is supplied as a continuum of differentiated varieties, and each variety is produced by a single firm under monopolistic competition. Firms can differ by productivity, both within and between sectors. We denote by G_{j} the continuously differentiable cumulative distribution function, from which firms draw their marginal labor requirement, m, after entering sector j. An entrant need not operate and only firms with high productivity $1 / m$ survive. Let N_{j}^{E} and m_{j}^{d} be the mass of entrants and the marginal labor requirement of the least productive firm in sector j, respectively. Given N_{j}^{E}, a mass $N_{j}^{E} G_{j}\left(m_{j}^{d}\right)$ of varieties are then supplied by firms with $m \leq m_{j}^{d}$.

2.1 Equilibrium allocation

The utility maximization problem of a representative consumer is given by:

$$
\begin{align*}
\max _{\left\{q_{j}(m), \forall j, m\right\}} & U \equiv U\left(U_{1}, U_{2}, \ldots, U_{J}\right) \\
& U_{j} \equiv N_{j}^{E} \int_{0}^{m_{j}^{d}} u_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m) \\
\text { s.t. } & \sum_{j=1}^{J} N_{j}^{E} \int_{0}^{m_{j}^{d}} p_{j}(m) q_{j}(m) \mathrm{d} G_{j}(m)=w, \tag{1}
\end{align*}
$$

where U is a strictly increasing and strictly concave upper-tier utility function that is twice continuously differentiable in all its arguments; u_{j} is a strictly increasing, strictly concave, and thrice continuously differentiable sector-specific subutility function satisfying $u_{j}(0)=$ $0 ; p_{j}(m)$ and $q_{j}(m)$ are the price and consumption of a sector- j variety produced with marginal labor requirement m; and w denotes a consumer's income. We assume that $\lim _{U_{j} \rightarrow 0}\left(\partial U / \partial U_{j}\right)=\infty$ for all sectors to be active.

Let λ denote the Lagrange multiplier associated with (1). The utility-maximizing consumptions satisfy the following first-order conditions:

$$
\begin{equation*}
u_{j}^{\prime}\left(q_{j}(m)\right)=\lambda_{j} p_{j}(m), \quad \text { where } \quad \lambda_{j} \equiv \frac{\lambda}{\partial U / \partial U_{j}} \tag{2}
\end{equation*}
$$

To alleviate notation, let $p_{j}^{d} \equiv p_{j}\left(m_{j}^{d}\right)$ and $q_{j}^{d} \equiv q_{j}\left(m_{j}^{d}\right)$ denote the price set and quantity sold by the least productive firm operating in sector j, respectively. From the first-order conditions (2), which hold for any sector j and any firm with $m \leq m_{j}^{d}$, we then have

$$
\begin{equation*}
\frac{u_{j}^{\prime}\left(q_{j}^{d}\right)}{u_{j}^{\prime}\left(q_{j}(m)\right)}=\frac{p_{j}^{d}}{p_{j}(m)} \quad \text { and } \quad \frac{u_{j}^{\prime}\left(q_{j}^{d}\right)}{u_{\ell}^{\prime}\left(q_{\ell}^{d}\right)}=\frac{\lambda_{j}}{\lambda_{\ell}} \frac{p_{j}^{d}}{p_{\ell}^{d}} \tag{3}
\end{equation*}
$$

which determine the equilibrium intra- and intersectoral consumption patterns, respectively.
We assume that the labor market is competitive, and that workers are mobile across sectors. All firms hence take the common wage w as given. Turning to technology, entry into each sector j requires to hire a sunk amount F_{j} of labor paid at the market wage. After paying the sunk cost, $F_{j} w>0$, each firm draws its marginal labor requirement from G_{j}, which is known to all firms. Conditional on survival, production takes place with constant marginal cost, $m w$, and sector-specific fixed cost, $f_{j} w \geq 0$.

Let $\pi_{j}(m)$ denote the operating profit of a firm with productivity $1 / m$, divided by the wage rate w. Making use of condition (2), and of the equivalence between price and quantity as the firm's choice variable under monopolistic competition with a continuum of firms (Vives, 1999), the firm maximizes its operating profit

$$
\begin{equation*}
\pi_{j}(m)=L\left[\frac{u_{j}^{\prime}\left(q_{j}(m)\right)}{\lambda_{j} w}-m\right] q_{j}(m)-f_{j} \tag{4}
\end{equation*}
$$

with respect to quantity $q_{j}(m)$. Although $\lambda_{j} w$ contains the information of all the other sectors by (2), each firm takes this market aggregate as given because there is a continuum
of firms. From (4), the profit-maximizing price satisfies

$$
\begin{equation*}
p_{j}(m)=\frac{m w}{1-r_{u_{j}}\left(q_{j}(m)\right)^{\prime}} \tag{5}
\end{equation*}
$$

where $r_{u_{j}}(x) \equiv-x u_{j}^{\prime \prime}(x) / u_{j}^{\prime}(x)$ denotes the 'relative risk aversion' or the 'relative love for variety' (Behrens and Murata, 2007; Zhelobodko et al., 2012). ${ }^{5}$ In what follows, we refer to $1 /\left[1-r_{u_{j}}\left(q_{j}(m)\right)\right]$ as the private markup charged by a firm that produces output $q_{j}(m)$.

To establish the existence and uniqueness of an equilibrium cutoff, $\left(m_{j}^{d}\right)^{\text {eqm }}$, and equilibrium quantities, $q_{j}^{\text {eqm }}(m)$ for all $m \in\left[0, m_{j}^{d}\right]$, we consider the zero cutoff profit (ZCP) condition, given by $\pi_{j}\left(m_{j}^{d}\right)=0$, and the zero expected profit (ZEP) condition, defined as $\int_{0}^{m_{j}^{d}} \pi_{j}(m) \mathrm{d} G_{j}(m)=F_{j}$. Using (2), (4), and (5), the ZCP and ZEP conditions can be expressed respectively as follows:

$$
\begin{align*}
{\left[\frac{1}{1-r_{u_{j}}\left(q_{j}^{d}\right)}-1\right] m_{j}^{d} q_{j}^{d} } & =\frac{f_{j}}{L} \tag{6}\\
L \int_{0}^{m_{j}^{d}}\left[\frac{1}{1-r_{u_{j}}\left(q_{j}(m)\right)}-1\right] m q_{j}(m) \mathrm{d} G_{j}(m) & =f_{j} G_{j}\left(m_{j}^{d}\right)+F_{j} \tag{7}
\end{align*}
$$

which - even in our multi-sector economy - allow us to prove the existence and uniqueness of the sectoral cutoff and quantities as in the single-sector analysis by Zhelobodko et al. (2012).

Proposition 1 (Equilibrium cutoff and quantities) Assume that the fixed costs, f_{j}, and sunk costs, F_{j}, are not too large. Then, the equilibrium cutoff and quantities $\left\{\left(m_{j}^{d}\right)^{\mathrm{eqm}}, q_{j}^{\mathrm{eqm}}(m), \forall m \in\right.$ $\left[0,\left(m_{j}^{d}\right)\right.$ eqm $\left.]\right\}$ in each sector j are uniquely determined.
Proof See Appendix A.1.
Turning to the equilibrium labor allocation, L_{j}, and the equilibrium mass of entrants, N_{j}^{E}, in each sector j, we first provide two important expressions that must hold in equilibrium. ${ }^{6}$ We then establish the existence and uniqueness of the equilibrium labor allocation and entry.
Lemma 1 (Labor allocation and entry) Any equilibrium labor allocation in sector $j=1,2, \ldots, J$ satisfies

$$
\begin{equation*}
L_{j}=e_{j} L=\frac{\frac{R_{j}}{U_{j}} \mathcal{E}_{U, U_{j}}}{\sum_{\ell=1}^{J} \frac{R_{\ell}}{U_{\ell}} \mathcal{E}_{U, U_{\ell}}} L \tag{8}
\end{equation*}
$$

[^4]where $e_{j} \equiv N_{j}^{E} \int_{0}^{m_{j}^{d}} p_{j}(m) q_{j}(m) \mathrm{d} G_{j}(m) / w$ is the expenditure share for sector- j varieties; R_{j} / U_{j} is the real revenue-to-utility ratio, where $R_{j} \equiv N_{j}^{E} \int_{0}^{m_{j}^{d}} u_{j}^{\prime}\left(q_{j}(m)\right) q_{j}(m) \mathrm{d} G_{j}(m)$ is the sectoral real revenue; and $\mathcal{E}_{U, U_{j}} \equiv\left(\partial U / \partial U_{j}\right)\left(U_{j} / U\right)$ is the elasticity of the upper-tier utility function with respect to the lower-tier utility in sector j. Furthermore, any equilibrium mass of entrants satisfies
\[

$$
\begin{equation*}
N_{j}^{E}=e_{j} L\left\{\frac{1-\int_{0}^{m_{j}^{d}}\left[1-r_{u_{j}}\left(q_{j}(m)\right)\right] \nu_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)}{f_{j} G_{j}\left(m_{j}^{d}\right)+F_{j}}\right\} \tag{9}
\end{equation*}
$$

\]

where $\nu_{j}\left(q_{j}(m)\right)=u_{j}^{\prime}\left(q_{j}(m)\right) q_{j}(m) / \int_{0}^{m_{j}^{d}} u_{j}^{\prime}\left(q_{j}(m)\right) q_{j}(m) \mathrm{d} G_{j}(m)$ is the revenue share of a variety produced with marginal labor requirement m in sector j.

Proof See Appendix B.1.

Lemma 1 shows that, in any equilibrium, the labor share L_{j} / L must be the same as the expenditure share e_{j} for all sectors. More importantly, the latter can be expressed by the real revenue-to-utility ratios R_{j} / U_{j} and the elasticities $\mathcal{E}_{U, U_{j}}$ of the upper-tier utility function. We will discuss the intuition of those terms in Section 2.3. The mass of entrants is more complicated since it is affected not only by e_{j}, but also by effective entry cost $f_{j} G_{j}\left(m_{j}^{d}\right)+F_{j}$, the distribution of the markup terms $1-r_{u_{j}}\left(q_{j}(m)\right)$, and the revenue shares $\nu_{j}\left(q_{j}(m)\right)$. It is worth emphasizing that we have not specified functional forms for either utility or productivity distributions to derive those results.

Note that Lemma 1 does not yet imply existence and uniqueness of the equilibrium labor allocation and the equilibrium mass of entrants. The reason is that, while the expression in the braces in (9) is uniquely determined by Proposition 1 , the expenditure share e_{j} can depend on $\left\{N_{j}^{E}\right\}_{j=1,2, \ldots, J}$ via $\mathcal{E}_{U, U_{j}}$. Thus, to establish those properties, we impose some separability on the upper-tier utility function. More specifically, assume that the derivative of the upper-tier utility function with respect to the lower-tier utility in each sector can be divided into an own-sector and an economy-wide component as follows:

$$
\begin{equation*}
\frac{\partial U}{\partial U_{j}}=\gamma_{j} U_{j}^{\xi_{j}} U^{\xi} \tag{10}
\end{equation*}
$$

where $\gamma_{j}>0, \xi_{j}<0$, and $\xi>0$ are parameters. 7 Specification (10) includes, for example,
${ }^{7}$ The crucial points are that, under condition (10), the ratio of the derivatives in (2) with respect to j and ℓ depends on N_{j}^{E} and N_{ℓ}^{E} only, and that it satisfies some monotonicity properties. Should the ratio of the derivatives in (2) depend on all N_{i}^{E} terms, the system of equations becomes generally intractable.
the cases where the upper-tier utility function is of either the Cobb-Douglas or the ces form. When condition (10) holds, we can prove the following result:

Proposition 2 (Equilibrium labor allocation and entry) Assume that (10) holds. Then, the equilibrium labor allocation and masses of entrants $\left\{L_{j}^{\mathrm{eqm}},\left(N_{j}^{E}\right)^{\text {eqm }}\right\}_{j=1,2, \ldots, J}$ are uniquely determined by (8) and (9).

Proof See Appendix A.2.

2.2 Optimal allocation

Having analyzed the equilibrium allocation, we turn to the optimal allocation. ${ }^{8}$ Assume that the planner chooses the quantities, cutoffs, and masses of entrants to maximize welfare subject to the resource constraint of the economy as follows:

$$
\begin{align*}
\max _{\left\{q_{j}(m), m_{j}^{d}, N_{j}^{E}, \forall j, m\right\}} & L \cdot U\left(U_{1}, U_{2}, \ldots, U_{J}\right) \\
& U_{j} \equiv N_{j}^{E} \int_{0}^{m_{j}^{d}} u_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m) \\
\text { s.t. } & \sum_{j=1}^{J} N_{j}^{E}\left\{\int_{0}^{m_{j}^{d}}\left[L m q_{j}(m)+f_{j}\right] \mathrm{d} G_{j}(m)+F_{j}\right\}=L . \tag{11}
\end{align*}
$$

The planner has no control over the uncertainty of the draws of m, but knows the underlying distributions G_{j}. Let δ denote the Lagrange multiplier associated with (11). The first-order conditions with respect to quantities, cutoffs, and the masses of entrants are given by:

$$
\begin{align*}
u_{j}^{\prime}\left(q_{j}(m)\right) & =\delta_{j} m, \quad \delta_{j} \equiv \frac{\delta}{\partial U / \partial U_{j}} \tag{12}\\
L \frac{u_{j}\left(q_{j}^{d}\right)}{\delta_{j}} & =L m_{j}^{d} q_{j}^{d}+f_{j} \tag{13}\\
L \int_{0}^{m_{j}^{d}} \frac{u_{j}\left(q_{j}(m)\right)}{\delta_{j}} \mathrm{~d} G_{j}(m) & =\int_{0}^{m_{j}^{d}}\left[L m q_{j}(m)+f_{j}\right] \mathrm{d} G_{j}(m)+F_{j} . \tag{14}
\end{align*}
$$

[^5]From the first-order conditions (12), which hold for any sector j and any firm with $m \leq m_{j}^{d}$, we then have

$$
\begin{equation*}
\frac{u_{j}^{\prime}\left(q_{j}^{d}\right)}{u_{j}^{\prime}\left(q_{j}(m)\right)}=\frac{m_{j}^{d}}{m} \quad \text { and } \quad \frac{u_{j}^{\prime}\left(q_{j}^{d}\right)}{u_{\ell}^{\prime}\left(q_{\ell}^{d}\right)}=\frac{\delta_{j}}{\delta_{\ell}} \frac{m_{j}^{d}}{m_{\ell}^{d}} \tag{15}
\end{equation*}
$$

which determine the optimal intra- and intersectoral consumption patterns, respectively.
We start again with the cutoff and quantities. Noting that $\delta_{j}=u_{j}^{\prime}\left(q_{j}(m)\right) / m$ for any value of m from (12), we can rewrite condition (14) as follows:

$$
\begin{equation*}
L \int_{0}^{m_{j}^{d}}\left[\frac{1}{\mathcal{E}_{u_{j}, q_{j}(m)}}-1\right] m q_{j}(m) \mathrm{d} G_{j}(m)=f_{j} G_{j}\left(m_{j}^{d}\right)+F_{j} \tag{16}
\end{equation*}
$$

where $\mathcal{E}_{u_{j}, q_{j}(m)} \equiv q_{j}(m) u_{j}^{\prime}\left(q_{j}(m)\right) / u_{j}\left(q_{j}(m)\right)$ is the elasticity of the subutility u_{j}. We refer to $1 / \mathcal{E}_{u_{j}, q_{j}(m)}$ as the social markup that a firm with marginal labor requirement m should optimally charge, and to $m / \mathcal{E}_{u_{j}, q_{j}(m)}$ as the shadow price of a variety produced by a firm with m in sector $j .{ }^{9}$ Condition (16) may then be understood as the zero expected social profit (zESP) condition, which is analogous to the zEP condition (7). Furthermore, evaluating (12) at m_{j}^{d} and plugging the resulting expression into (13), we obtain an expression similar to the ZCP condition (6) as follows:

$$
\begin{equation*}
\left(\frac{1}{\mathcal{E}_{u_{j}, q_{j}^{d}}}-1\right) m_{j}^{d} q_{j}^{d}=\frac{f_{j}}{L}, \tag{17}
\end{equation*}
$$

which we call the zero cutoff social profit (ZCSP) condition. Using (16) and (17), we can establish the existence and uniqueness of the sectoral cutoff and quantities.

Proposition 3 (Optimal cutoff and quantities) Assume that the fixed costs, f_{j}, and the sunk costs, F_{j}, are not too large. Then, the optimal cutoff and quantities $\left\{\left(m_{j}^{d}\right)^{\mathrm{opt}}, q_{j}^{\mathrm{opt}}(m), \forall m \in\right.$ $\left.\left[0,\left(m_{j}^{d}\right)^{\mathrm{opt}}\right]\right\}$ in each sector j are uniquely determined.

Proof See Appendix A.3.
Turning next to the optimal labor allocation, L_{j}, and the optimal masses of entrants, N_{j}^{E}, we proceed in the same way as for the equilibrium case, and provide the following two expressions.

[^6]Lemma 2 (Labor allocation and entry) Any optimal labor allocation in sector $j=1,2, \ldots, J$ satisfies

$$
\begin{equation*}
L_{j}=e_{j} L=\frac{\mathcal{E}_{U, U_{j}}}{\sum_{\ell=1}^{J} \mathcal{E}_{U, U_{\ell}}} L \tag{18}
\end{equation*}
$$

where $e_{j} \equiv N_{j}^{E} \int_{0}^{m_{j}^{d}} m q_{j}(m) / \mathcal{E}_{u_{j}, q_{j}(m)} \mathrm{d} G_{j}(m)$ is the social expenditure share for sector- j varieties constructed by using their shadow prices and optimal quantities. Furthermore, any optimal mass of entrants satisfies

$$
\begin{equation*}
N_{j}^{E}=e_{j} L\left\{\frac{1-\int_{0}^{m_{j}^{d}} \mathcal{E}_{u_{j}, q_{j}(m)} \zeta_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)}{f_{j} G_{j}\left(m_{j}^{d}\right)+F_{j}}\right\} \tag{19}
\end{equation*}
$$

where $\zeta_{j}\left(q_{j}(m)\right) \equiv u_{j}\left(q_{j}(m)\right) / \int_{0}^{m_{j}^{d}} u_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)$ captures the relative contribution of a variety produced with marginal labor requirement m to utility in sector j.

Proof See Appendix B.2.
Lemma 2 shows that, in any optimal allocation, the sectoral labor share must be the same as the sectoral expenditure share. Observe that this expression is analogous to that in equilibrium, with the private expenditure share being replaced by the social expenditure share. The latter can be expressed solely in terms of the elasticities $\mathcal{E}_{U, U_{j}}$ of the upper-tier utility function, and does not involve the real revenue-to-utility ratio. The optimal mass of entrants is again more complicated since it also includes effective entry costs, the distribution of social markup terms $\mathcal{E}_{u_{j}, q_{j}(m)}$, and the shares $\zeta_{j}\left(q_{j}(m)\right)$ that capture the relative contribution of a variety produced with marginal labor requirement m to utility in sector j.

Finally, similarly as in the equilibrium analysis, Lemma 2 does not yet imply the existence and uniqueness of the optimal labor allocation and the optimal masses of entrants. We thus impose again the separability condition (10) to establish those properties as follows:

Proposition 4 (Optimal labor allocation and entry) Assume that (10) holds. Then, the optimal labor allocation and masses of entrants $\left\{L_{j}^{\mathrm{opt}},\left(N_{j}^{E}\right)^{\mathrm{opt}}\right\}_{j=1,2, \ldots, J}$ are uniquely determined by (18) and (19).

Proof See Appendix A.4.

2.3 Equilibrium versus optimum

Having established existence and uniqueness of the equilibrium and optimal allocations in Propositions 1-4, we are now ready to investigate how equilibrium and optimum generally differ.

First, there are cutoff and output distortions within sectors. By the proofs of Propositions 1 and 3 , we know that $\lambda_{j} w$ and δ_{j} are uniquely determined without any information on the other sectors. Hence, we can study the equilibrium and optimal cutoffs and quantities on a sector-by-sector basis. The analysis of cutoff and quantity distortions in each sector j then works as in the single-sector model by Dhingra and Morrow (2014) who characterize those inefficiencies solely by the properties of u_{j} and G_{j}. We shall not repeat their general analysis here, but we illustrate it in the next section using specific examples.

The novel feature of our model lies in labor and entry distortions between sectors. It is important to notice that, unlike the cutoff and quantity distortions, characterizing labor and entry distortions for one sector requires information on all sectors. Put differently, the labor allocation and, thus, entry are interdependent when there are multiple sectors. Hence, entry distortions in our multi-sector model generally differ from those in models with a single imperfectly competitive sector such as Mankiw and Whinston (1986) and Dhingra and Morrow (2014).

To characterize the labor and entry distortions, compare expressions (8) and (9) from Lemma 1 with (18) and (19) from Lemma 2 . We then obtain the following expressions:

$$
\begin{align*}
\frac{L_{j}^{\mathrm{eqm}}}{L_{j}^{\mathrm{opt}}} & =\frac{e_{j}^{\mathrm{eqm}}}{e_{j}^{\mathrm{opt}}} \tag{20}\\
\frac{\left(N_{j}^{E}\right)^{\mathrm{eqm}}}{\left(N_{j}^{E}\right)^{\mathrm{opt}}} & =\frac{e_{j}^{\mathrm{eqm}}}{e_{j}^{\mathrm{opt}}} \cdot \frac{f_{j} G_{j}\left(\left(m_{j}^{d}\right)^{\mathrm{opt}}\right)+F_{j}}{f_{j} G_{j}\left(\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right)+F_{j}} \cdot \frac{1-\int_{0}^{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\left[1-r_{u_{j}}\left(q_{j}(m)\right)\right] \nu_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)}{1-\int_{0}^{\left(m_{j}^{d}\right)^{\mathrm{opt}}} \mathcal{E}_{u_{j}, q_{j}(m)} \zeta_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)} . \tag{21}
\end{align*}
$$

Starting with the labor allocation, expression (20) implies that the equilibrium labor allocation is efficient - i.e., $L_{j}^{\text {eqm }}=L_{j}^{\text {opt }}$ - if and only if equilibrium expenditure shares coincide with their optimal counterparts - i.e., $e_{j}^{\mathrm{eqm}}=e_{j}^{\mathrm{opt}}$. Otherwise, the labor share is excessive (insufficient) in sectors with a suboptimally large (small) budget share.

Turning to the entry distortions, expression (21) shows that $\left(N_{j}^{E}\right)^{\text {eqm }} /\left(N_{j}^{E}\right)^{\text {opt }}$ depends on three terms. The first term $e_{j}^{\mathrm{eqm}} / e_{j}^{\mathrm{opt}}$ is equivalent to $L_{j}^{\mathrm{eqm}} / L_{j}^{\mathrm{opt}}$ by (20). In a single-sector model, this term vanishes because $L_{j}^{\text {eqm }}=L_{j}^{\text {opt }}=L$. In a multi-sector model, however, the gap between $e_{j}^{\text {eqm }}$ and $e_{j}^{\text {opt }}$ plays a crucial role. We will come to this term below. The second and third terms capture two additional margins, namely 'effective fixed costs' and 'private and social markups', which we explain in turn. ${ }^{10}$

[^7]Effective fixed costs. The second term in (21) shows that if the market delivers too little selection, $\left(m_{j}^{d}\right)^{\text {eqm }}>\left(m_{j}^{d}\right)^{\text {opt }}$, entry tends to be insufficient. The reason is that the higher survival probability in equilibrium, as compared to the optimum, increases the expected fixed costs that entrants have to pay. This reduces expected profitability and discourages entry more in equilibrium than in optimum. In contrast, other things equal, too much equilibrium selection, $\left(m_{j}^{d}\right)^{\text {eqm }}<\left(m_{j}^{d}\right)^{\text {opt }}$, leads to excessive entry.

Private and social markups. The last term in (21) shows that the gap between equilibrium and optimal entry depends on the private and social markup terms, which may exacerbate or attenuate excess entry (Mankiw and Whinston, 1986; Dhingra and Morrow, 2014). The numerator can be related to the business stealing effect: the higher the private markups $1 /[1-$ $\left.r_{u_{j}}\left(q_{j}(m)\right)\right]$, the more excessive the entry. The denominator, in turn, captures the limited appropriability effect: the greater the social markups $1 / \mathcal{E}_{u_{j}, q_{j}(m)}$, the more insufficient the entry. Thus, the last term in (21) depends on the relative strength of these two effects, as well as on the weighting schemes $\nu_{j}\left(q_{j}(m)\right)$ and $\zeta_{j}\left(q_{j}(m)\right)$ that are determined by the properties the subutility function u_{j} and the productivity distribution function G_{j}.

The following Proposition summarizes the general result for distortions in the labor allocation (20) and thus for the first term of entry distortions (21).

Proposition 5 (Distortions in the labor allocation) The equilibrium and optimal labor allocations satisfy $L_{j}^{\text {eqm }} \gtreqless L_{j}^{\text {opt }}$ if and only if the equilibrium and optimal expenditure shares satisfy $e_{j}^{\mathrm{eqm}} \gtreqless e_{j}^{\mathrm{opt}}$, which is equivalent to

$$
\begin{equation*}
\frac{\frac{R_{j}}{U_{j}} \mathcal{E}_{U, U_{j}}^{\mathrm{eqm}}}{\sum_{\ell=1}^{J} \frac{R_{\ell}}{U_{\ell}} \mathcal{E}_{U, U_{\ell}}^{\mathrm{eqm}}} \gtreqless \frac{\mathcal{E}_{U, U_{j}}^{\mathrm{opt}}}{\sum_{\ell=1}^{J} \mathcal{E}_{U, U_{\ell}}^{\mathrm{opt}}} \tag{22}
\end{equation*}
$$

where the left- and right-hand sides are evaluated at the equilibrium and at the optimum, respectively. Assume, without loss of generality, that sectors are ordered such that $e_{j}^{\mathrm{eqm}} / e_{j}^{\mathrm{opt}}$ is non-decreasing in j. If there are at least two different $e_{j}^{\mathrm{eqm}} / e_{j}^{\mathrm{opt}} \mathrm{s}$, then there exists a threshold $j^{*} \in\{1,2, \ldots, J-1\}$ such that the equilibrium labor allocation is insufficient for sectors $j \leq j^{*}$, whereas it is excessive for sectors $j>j^{*}$. The equilibrium labor allocation is optimal if and only if all $e_{j}^{\mathrm{eqm}} / e_{j}^{\mathrm{opt}}$ terms are the same.

Proof See Appendix A.5.
As can be seen from (22), the interdependence of heterogeneous sectors is important for distortions in the labor allocation. Which sectors display excess labor allocation depends
on two types of heterogeneity: the sectoral real revenue-to-utility ratios, R_{j} / U_{j} evaluated at the equilibrium; and the elasticities of the upper-tier utility function, $\mathcal{E}_{U, U_{j}}$, evaluated at the equilibrium and optimum. We now shed more light on the importance of those two components to build the intuition for this result.

Real revenue-to-utility ratios. In our setting with heterogeneous firms, the real revenue-to-utility ratio in sector j can be expressed as follows:

$$
\begin{equation*}
\frac{R_{j}}{U_{j}}=\frac{\int_{0}^{m_{j}^{d}} u_{j}^{\prime}\left(q_{j}(m)\right) q_{j}(m) \mathrm{d} G_{j}(m)}{\int_{0}^{m_{j}^{d}} u_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)}=\int_{0}^{m_{j}^{d}} \mathcal{E}_{u_{j}, q_{j}(m)} \zeta_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)<1 \tag{23}
\end{equation*}
$$

where $\zeta_{j}\left(q_{j}(m)\right)$ is the relative contribution of a variety to utility in sector j; and where the inverse of the social markup, $\mathcal{E}_{u_{j}, q_{j}(m)}$, captures the appropriability of $\zeta_{j}\left(q_{j}(m)\right)$ by a firm with productivity $1 / m$. The inequality in (23) holds because $\mathcal{E}_{u_{j}, q_{j}(m)}<1$ for all $m \in\left[0, m_{j}^{d}\right]$ by concavity of u_{j}, and because $\int_{0}^{m_{j}^{d}} \mathcal{E}_{u_{j}, q_{j}(m)} \zeta_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)<\int_{0}^{m_{j}^{d}} \zeta_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)=1$ by the definition of $\zeta_{j}\left(q_{j}(m)\right)$ in Lemma 2.

Expression (23) shows that the revenue-to-utility ratio R_{j} / U_{j} tends to increase with a greater appropriability, especially for varieties associated with a greater utility weight $\zeta_{j}\left(q_{j}(m)\right)$. By construction, R_{j} / U_{j} depends on the properties of u_{j} and G_{j}. Using the definition of the covariance and $\int_{0}^{m_{j}^{d}} \zeta_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)=1$, we can also rewrite (23) as:

$$
\begin{aligned}
\frac{R_{j}}{U_{j}} & =\left[\int_{0}^{m_{j}^{d}} \mathcal{E}_{u_{j}, q_{j}(m)} \mathrm{d} G_{j}(m)\right]\left[\int_{0}^{m_{j}^{d}} \zeta_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)\right]+\operatorname{cov}\left(\mathcal{E}_{u_{j}, q_{j}(m)}, \zeta_{j}\left(q_{j}(m)\right)\right) \\
& =\overline{\mathcal{E}}_{u_{j}, q_{j}(m)}+\operatorname{cov}\left(\mathcal{E}_{u_{j}, q_{j}(m)}, \zeta_{j}\left(q_{j}(m)\right)\right)
\end{aligned}
$$

where $\overline{\mathcal{E}}_{u_{j}, q_{j}(m)} \equiv \int_{0}^{m_{j}^{d}} \mathcal{E}_{u_{j}, q_{j}(m)} \mathrm{d} G_{j}(m)$. Hence, the labor allocation tends to be more excessive in sectors with higher average appropriability $\overline{\mathcal{E}}_{u_{j}, q_{j}(m)}$ and with larger covariance, i.e., when varieties with higher approporiability tend to contribute more to the consumers' utility.

Elasticities of the upper-tier utility function. The second key ingredient of the labor distortions in (22) are the equilibrium and optimal elasticities of the upper-tier utility function, $\mathcal{E}_{U, U_{j}}^{\text {eqm }}$ and $\mathcal{E}_{U, U_{j}}^{\text {opt }}$. Consumers allocate more expenditure to varieties produced in sectors with higher elasticity. Other things equal, the higher the equilibrium upper-tier elasticities rela-
tive to the optimal counterpart in one sector, the higher the equilibrium expenditure share relative to the optimal counterpart in that sector, thereby leading to more excessive entry.

It is worth emphasizing that even when the equilibrium and optimal elasticities of uppertier utility in each sector are the same, i.e., $\mathcal{E}_{U, U_{j}}^{\mathrm{eqm}}=\mathcal{E}_{U, U_{j}}^{\mathrm{opt}}$, their sectoral heterogeneity plays a crucial role in the labor and entry distortions. Indeed, although $\mathcal{E}_{U, U_{j}}^{\mathrm{eqq}}$ and $\mathcal{E}_{U, U_{j}}^{\mathrm{opt}}$ in the numerator of (22) cancel each other out when they are identical, the elasticities in the denominator remain. We will elaborate on this point in the next section where we illustrate some examples.

To sum up, the difference between market equilibrium and social optimum in terms of the labor allocation and firm entry across heterogeneous sectors depends, in general, on four key ingredients: effective fixed costs; private and social markups; real revenue-toutility ratios; and the elasticities of the upper-tier utility. While distortions in a single-sector model are characterized solely by u_{j} and G_{j} for that sector (Dhingra and Morrow, 2014), in a multi-sector setting characterizing distortions for one sector requires additional information on the revenue-to-utility ratios R_{j} / U_{j} and the elasticities of the upper-tier utility $\mathcal{E}_{U, U_{j}}$ for all sectors. Hence, when assessing distortions we need to take into account the interdependence between heterogeneous sectors.

3 Examples

We have so far made only few assumptions on functional forms. To derive sharper results, and ultimately to take our model to the data, we now consider specific functional forms for both the subutilities and the upper-tier utility that allow for simple closed-form solutions.

Starting with the subutility function u_{j}, we first analyze in Section 3.1 the ubiquitous ces case that has dominated much of the literature on monopolistic competition. We then turn to a tractable 'variable elasticity of substitution' (VES) model in Section 3.2

In doing so, notice that the lower-tier utility U_{j} in specification (1) does not nest the standard homothetic ces aggregator. To nest it, we consider a simple monotonic transformation of the lower-tier utility in (1) as $\widetilde{U}_{j}\left(U_{j}\right)$. In Section 3.1 we assume that $\widetilde{U}_{j}\left(U_{j}\right)=U_{j}^{1 / \rho_{j}}=$ $\left[N_{j}^{E} \int_{0}^{m_{j}^{d}} q_{j}(m)^{\rho_{j}} \mathrm{~d} G_{j}(m)\right]^{1 / \rho_{j}}$, whereas we retain $\widetilde{U}_{j}\left(U_{j}\right)=U_{j}$ in Section 3.2.

Even with the transformation \widetilde{U}_{j} of the lower-tier utility, we can re-establish the general results shown in Section 2, as long as we let $\widetilde{U}_{j}(0)=0, \widetilde{U}_{j}^{\prime}>0$, and $\lim _{U_{j} \rightarrow \infty} \widetilde{U}_{j}\left(U_{j}\right)=\infty$,
while replacing the condition in (10) with ${ }^{11}$

$$
\begin{equation*}
\frac{\partial U}{\partial \widetilde{U}_{j}} \frac{\partial \widetilde{U}_{j}}{\partial U_{j}}=\gamma_{j} \widetilde{U}_{j}^{\xi_{j}} U^{\xi} \tag{24}
\end{equation*}
$$

where $\gamma_{j}>0, \xi_{j}<0$, and $\xi>0$ are parameters.
Turning to the upper-tier utility function, we consider in the remainder of this paper the standard ces form: $U=\left\{\sum_{j=1}^{J} \beta_{j}\left[\widetilde{U}_{j}\left(U_{j}\right)\right]^{(\sigma-1) / \sigma}\right\}^{\sigma /(\sigma-1)}$, where $\sigma \geq 1, \beta_{j}>0$ for all j, and $\sum_{j=1}^{J} \beta_{j}=1$. Thus, the elasticity of the upper-tier utility function is given by $\mathcal{E}_{U, U_{j}} \equiv\left(\partial U / \partial \widetilde{U}_{j}\right)\left(\partial \widetilde{U}_{j} / \partial U_{j}\right)\left(U_{j} / U\right)=\beta_{j}\left(\partial \widetilde{U}_{j} / \partial U_{j}\right)\left(U_{j} / \widetilde{U}_{j}\right)\left(\widetilde{U}_{j} / U\right)^{(\sigma-1) / \sigma}$. When $\sigma \rightarrow 1$, the upper-tier utility reduces to the Cobb-Douglas form, $U=\prod_{j=1}^{J}\left[\widetilde{U}_{j}\left(U_{j}\right)\right]^{\beta_{j}}$, so that

$$
\begin{equation*}
\mathcal{E}_{U, U_{j}}=\beta_{j}\left(\frac{\partial \widetilde{U}_{j}}{\partial U_{j}} \frac{U_{j}}{\widetilde{U}_{j}}\right) \tag{25}
\end{equation*}
$$

The Cobb-Douglas upper-tier utility function always satisfies condition (24) that guarantees the existence and uniqueness of the equilibrium and optimal allocations. When the uppertier utility function is of the Ces form, whereas the lower-tier utility is of the homothetic Ces form with $\widetilde{U}_{j}\left(U_{j}\right)=U_{j}^{1 / \rho_{j}}$, we have $\left(\partial U / \partial \widetilde{U}_{j}\right)\left(\partial \widetilde{U}_{j} / \partial U_{j}\right)=\left(\beta_{j} / \rho_{j}\right) \widetilde{U}_{j}^{\frac{\sigma-1}{\sigma}-\rho_{j}} U^{1 / \sigma}$. Hence, in that case, it is required that $(\sigma-1) / \sigma<\rho_{j}$ for condition (24) to hold with $\xi_{j}<0 .{ }^{12}$

Those specifications for the upper-tier utility function significantly simplify the analysis of entry and labor distortions. Retaining $\sigma \rightarrow 1$ for now, we consider two specific forms for the subutility functions for which the real revenue-to-utility ratios display a simple behavior. We will return to the case with $\sigma>1$ in Section 4 where we quantify the model.

3.1 CES subutility

We first discuss the case of the ces subutility that has been widely used in the literature. Assume that $u_{j}\left(q_{j}(m)\right)=q_{j}(m)^{\rho_{j}}$ and $\widetilde{U}_{j}\left(U_{j}\right)=U_{j}^{1 / \rho_{j}}$, where $\rho_{j} \in(0,1)$ for all sectors j. Using (25), the elasticity of the upper-tier utility function can be rewritten as $\mathcal{E}_{U, U_{j}}^{\mathrm{eqm}}=\mathcal{E}_{U, U_{j}}^{\mathrm{opt}}=$ β_{j} / ρ_{j}, whereas the elasticity of substitution between any pair of varieties in sector j is given

[^8]by $1 /\left(1-\rho_{j}\right)$. Notice that we allow ρ_{j} to differ across sectors.
Since the cutoff and quantity distortions can be separated from the labor and entry distortions, we can use the single-sector result by Dhingra and Morrow (2014), i.e., in the ces case $\left(m_{j}^{d}\right)^{\text {eqm }}=\left(m_{j}^{d}\right)^{\text {opt }}$ and $q_{j}^{\text {eqm }}(m)=q_{j}^{\mathrm{opt}}(m)$ for all m irrespective of the underlying productivity distribution G_{j}. However, the equilibrium labor allocation and entry need not be optimal. By Proposition 5, the real revenue-to-utility ratios R_{j} / U_{j} evaluated at the equilibrium, together with the elasticities of upper-tier utility $\mathcal{E}_{U, U_{j}}^{\text {eqm }}=\mathcal{E}_{U, U_{j}}^{\mathrm{opt}}=\beta_{j} / \rho_{j}$, are crucial for those inefficiencies. When the subutility function is of the CEs form, we know that $\mathcal{E}_{u_{j}, q_{j}(m)}=\rho_{j}$, so that $R_{j} / U_{j}=\rho_{j}$ by (23). Furthermore, since $\left(m_{j}^{d}\right)^{\text {eqm }}=\left(m_{j}^{d}\right)^{\mathrm{opt}}, q_{j}^{\mathrm{eqm}}(m)=q_{j}^{\mathrm{opt}}(m)$, $\mathcal{E}_{u_{j}, q_{j}(m)}=1-r_{j}\left(q_{j}(m)\right)$, and $\nu_{j}\left(q_{j}(m)\right)=\zeta_{j}\left(q_{j}(m)\right)$ for all m holds in the ces case, the second and the third terms in (21) vanish, so that $\left(N_{j}^{E}\right)^{\mathrm{eqm}} /\left(N_{j}^{E}\right)^{\mathrm{opt}}=e_{j}^{\mathrm{eqm}} / e_{j}^{\mathrm{opt}}=L_{j}^{\mathrm{eqm}} / L_{j}^{\mathrm{opt}}$. Hence, we can restate Proposition 5 for this specific example as follows:

Corollary 1 (Distortions in the labor allocation and entry with ces subutility) Assume that the subutility function in each sector is of the ces form, $u_{j}\left(q_{j}(m)\right)=q_{j}(m)^{\rho_{j}}$. Then, the labor allocations and the masses of entrants satisfy $L_{j}^{\text {eqm }} \gtreqless L_{j}^{\mathrm{opt}}$ and $\left(N_{j}^{E}\right)^{\text {eqm }} \gtreqless\left(N_{j}^{E}\right)^{\mathrm{opt}}$, respectively, if and only if

$$
\begin{equation*}
\sum_{\ell=1}^{J} \frac{\beta_{\ell}}{\rho_{\ell}} \gtreqless \frac{1}{\rho_{j}} \tag{26}
\end{equation*}
$$

Assume, without loss of generality, that sectors are ordered such that ρ_{j} is non-decreasing in j. If there are at least two different ρ_{j} 's, there exists a threshold $j^{*} \in\{1,2, \ldots, J-1\}$ such that sectors $j \leq j^{*}$ display insufficient entry and insufficient labor allocation, whereas sectors $j>j^{*}$ display excess entry and excess labor allocation. The equilibrium allocation in the ces case is optimal if and only if all ρ_{j} 's are the same across sectors.

Proof See above.
Several comments are in order. First, since there are no cutoff and quantity distortions in the case of ces subutility functions, the market equilibrium is fully efficient if and only if the ρ_{j} 's are the same across all sectors. However, there are distortions in the labor allocation and in the masses of entrants when the ρ_{j} 's vary across sectors. ${ }^{13}$

Second, ρ_{j} in the ces model can be related not only to the inverse of the markup, but also to the elasticity of the upper-tier utility $\mathcal{E}_{U, U_{j}}$ and to the elasticity of the subutility $\mathcal{E}_{u_{j}, q_{j}(m)}$. It is the latter two elasticities that matter for the labor and entry distortions. The reason

[^9]is that the difference between the equilibrium and optimal expenditure shares comes from $R_{j} / U_{j}=\rho_{j}$ and $\mathcal{E}_{U, U_{j}}=\beta_{j} / \rho_{j}$, which are determined by the first derivatives of u_{j} and \widetilde{U}_{j} as seen from (23) and (25). In contrast, the markup depends on $r_{u_{j}}$, which involves the second derivative of u_{j}. Thus, in the case of the Cobb-Douglas upper-tier utility and ces subutility functions, markup heterogeneity is not a determinant of labor and entry distortions.

Third, Corollary 1 holds irrespective of the functional form for G_{j}. Hence, productivity distributions play no role in the optimality of the market outcome for the standard case with the Cobb-Douglas upper-tier utility and ces subutility functions.

Last, since Corollary 1 only pertains to the class of ces subutility functions, it must not be read as a general 'if and only if' result for any subutility function. Indeed, as we show in the next subsection, the labor allocation and entry can be efficient even when the subutility function is not of the ces form.

3.2 VES subutility

We have so far examined the case of ces subutility functions without cutoff and quantity distortions. We now turn to our ves example where all types of distortions - cutoff, quantity, labor, and entry distortions - can operate. Specifically, we consider the 'constant absolute risk aversion' (CARA) subutility as in Behrens and Murata (2007), $u_{j}\left(q_{j}(m)\right)=1-\mathrm{e}^{-\alpha_{j} q_{j}(m)}$, where α_{j} is a strictly positive parameter.

This specification can be viewed as an example of ves preferences analyzed in the seminal paper by Krugman (1979). It is analytically tractable, and generates demand functions exhibiting smaller price elasticity at higher consumption levels. Unlike the ces model, this ves case can therefore account for the empirically well-documented facts of incomplete passthrough and higher markups charged by more productive firms within each sector.

To derive closed-form solutions, assume that G_{j} follows a Pareto distribution $G_{j}(m)=$ $\left(m / m_{j}^{\max }\right)^{k_{j}}$, where both the upper bounds $m_{j}^{\max }>0$ and the shape parameters $k_{j} \geq 1$ may differ across sectors. In what follows, we assume that $\widetilde{U}_{j}\left(U_{j}\right)=U_{j}$, so that $\mathcal{E}_{U, U_{j}}^{\text {eqm }}=$ $\mathcal{E}_{U, U_{j}}^{\mathrm{opt}}=\beta_{j}$ by (25). We relegate most analytical details for the case with cara subutilities and Pareto productivity distributions to the supplementary Appendix E. We show there that the equilibrium and optimal cutoffs for this case are given as follows:

$$
\begin{equation*}
\left(m_{j}^{d}\right)^{\mathrm{eqm}}=\left[\frac{\alpha_{j} F_{j}\left(m_{j}^{\max }\right)^{k_{j}}}{\kappa_{j} L}\right]^{\frac{1}{k_{j}+1}} \quad \text { and } \quad\left(m_{j}^{d}\right)^{\mathrm{opt}}=\left[\frac{\alpha_{j} F_{j}\left(m_{j}^{\max }\right)^{k_{j}}\left(k_{j}+1\right)^{2}}{L}\right]^{\frac{1}{k_{j}+1}} \tag{27}
\end{equation*}
$$

where $\kappa_{j} \equiv k_{j} \mathrm{e}^{-\left(k_{j}+1\right)} \int_{0}^{1}(1+z)\left(z^{-1}+z-2\right)\left(z \mathrm{e}^{z}\right)^{k_{j}} \mathrm{e}^{z} \mathrm{~d} z>0$ is a function of the shape parameter k_{j} only. Using expressions (27), we can establish the following result:

Proposition 6 (Distortions in the cutoff and quantities with cara subutility) Assume that the subutility function in each sector is of the CARA form $u_{j}\left(q_{j}(m)\right)=1-\mathrm{e}^{-\alpha_{j} q_{j}(m)}$, and that the productivity distribution follows a Pareto distribution, $G_{j}(m)=\left(m / m_{j}^{\max }\right)^{k_{j}}$. Then, the equilibrium cutoff exceeds the optimal cutoff in each sector, i.e., $\left(m_{j}^{d}\right)^{\mathrm{eqm}}>\left(m_{j}^{d}\right)^{\mathrm{opt}}$. Furthermore, there exists a unique threshold $m_{j}^{*} \in\left(0,\left(m_{j}^{d}\right)^{\mathrm{opt}}\right)$ such that $q_{j}^{\mathrm{eqm}}(m)<q_{j}^{\mathrm{opt}}(m)$ for all $m \in\left[0, m_{j}^{*}\right)$ and $q_{j}^{\mathrm{eqm}}(m)>q_{j}^{\mathrm{opt}}(m)$ for all $m \in\left(m_{j}^{*},\left(m_{j}^{d}\right)^{\text {eqm }}\right)$.

Proof See Appendix A.6.
Three comments are in order. First, in this model, more productive firms with $m<m_{j}^{*}$ underproduce, whereas less productive firms with $m>m_{j}^{*}$ overproduce in equilibrium as compared to the optimum in each sector j. Notice that both types of firms coexist in equilibrium since the threshold m_{j}^{*} satisfies the inequalities $0<m_{j}^{*}<\left(m_{j}^{d}\right)^{\text {opt }}<\left(m_{j}^{d}\right)^{\text {eqm. }}{ }^{14}$

Second, using (27), the gap between the equilibrium and optimal selection can be expressed as a simple function of the sectoral shape parameter only: $\left(m_{j}^{d}\right)^{\mathrm{opt}} /\left(m_{j}^{d}\right)^{\text {eqm }}=$ $\left[\kappa_{j}\left(k_{j}+1\right)^{2}\right]^{1 /\left(k_{j}+1\right)}<1$. Since this expression increases with k_{j}, the larger the value of k_{j} (i.e., a larger mass of the productivity distribution is concentrated on low-productivity firms) the smaller is the magnitude of insufficient selection in sector j.

Finally, Proposition 6 holds on a sector-by-sector basis, regardless of the labor allocation and the masses of entrants. Thus, our results on cutoff and quantity distortions would also apply to a single-sector version of the cara model.

Turning to the labor and entry distortions, the combination of cara subutility functions and Pareto productivity distributions yields the equilibrium and optimal masses of entrants as follows (see expressions (E-17) and (E-30) in the supplementary Appendix E):

$$
\begin{equation*}
\left(N_{j}^{E}\right)^{\mathrm{eqm}}=\frac{e_{j}^{\mathrm{eqm}} L}{\left(k_{j}+1\right) F_{j}}=\frac{L_{j}^{\mathrm{eqm}}}{\left(k_{j}+1\right) F_{j}} \quad \text { and } \quad\left(N_{j}^{E}\right)^{\mathrm{opt}}=\frac{e_{j}^{\mathrm{opt}} L}{\left(k_{j}+1\right) F_{j}}=\frac{L_{j}^{\mathrm{opt}}}{\left(k_{j}+1\right) F_{j}} \tag{28}
\end{equation*}
$$

Thus, as in the ces case, we have $\left(N_{j}^{E}\right)^{\mathrm{eqm}} /\left(N_{j}^{E}\right)^{\mathrm{opt}}=e_{j}^{\mathrm{eqm}} / e_{j}^{\mathrm{opt}}=L_{j}^{\mathrm{eqm}} / L_{j}^{\mathrm{opt}}$. From Proposition 5 we know that distortions in the labor allocation are determined by the real

[^10]revenue-to-utility ratios R_{j} / U_{j} evaluated at the equilibrium, together with the elasticities of the upper-tier utility function $\mathcal{E}_{U, U_{j}}^{\text {eqm }}=\mathcal{E}_{U, U_{j}}^{\mathrm{opt}}=\beta_{j}$. When the subutility function is of the CARA form and the productivity distribution follows a Pareto distribution, we can show that R_{j} / U_{j} depends solely on the sectoral shape parameter k_{j} as follows:

Lemma 3 With a cara subutility function and a Pareto productivity distribution, we have:

$$
\begin{equation*}
\frac{R_{j}}{U_{j}}=\frac{\int_{0}^{1}(1-z) \mathrm{e}^{z-1}(1+z) \mathrm{e}^{z-1}\left(z \mathrm{e}^{z-1}\right)^{k_{j}-1} \mathrm{~d} z}{\int_{0}^{1}\left(1-\mathrm{e}^{z-1}\right)(1+z) \mathrm{e}^{z-1}\left(z \mathrm{e}^{z-1}\right)^{k_{j}-1} \mathrm{~d} z} \equiv \theta_{j} . \tag{29}
\end{equation*}
$$

Proof See Appendix B.3.
To characterize the labor and entry distortions, we rank sectors by their real revenue-toutility ratios such that $\theta_{1} \leq \theta_{2} \leq \ldots \leq \theta_{J}$. Since θ_{j} is increasing in k_{j}, ranking sectors by θ_{j} is equivalent to ranking them by k_{j}. Plugging (29) into (22), using $\mathcal{E}_{U, U_{j}}=\beta_{j}$ from the upper-tier Cobb-Douglas specification, and noting that $\left(N_{j}^{E}\right)^{\text {eqm }} /\left(N_{j}^{E}\right)^{\mathrm{opt}}=L_{j}^{\text {eqm }} / L_{j}^{\mathrm{opt}}$ by (28), we can restate Proposition 5 for this example as follows:

Corollary 2 (Distortions in the labor allocation and entry with cara subutility) Assume that the subutility function in each sector is of the CARA form, $u_{j}\left(q_{j}(m)\right)=1-\mathrm{e}^{-\alpha_{j} q_{j}(m)}$, and that the productivity distribution follows a Pareto distribution, $G_{j}(m)=\left(m / m_{j}^{\max }\right)^{k_{j}}$. Then, the labor allocation and the masses of entrants satisfy $L_{j}^{\text {eqm }} \gtreqless L_{j}^{\text {opt }}$ and $\left(N_{j}^{E}\right)^{\mathrm{eqm}} \gtreqless\left(N_{j}^{E}\right)^{\mathrm{opt}}$, respectively, if and only if

$$
\begin{equation*}
\theta_{j} \gtreqless \sum_{\ell=1}^{J} \beta_{\ell} \theta_{\ell} . \tag{30}
\end{equation*}
$$

Assume, without loss of generality, that sectors are ordered such that θ_{j} is non-decreasing in j. If there are at least two different θ_{j} 's, there exists a threshold $j^{*} \in\{1,2, \ldots, J-1\}$ such that sectors $j \leq j^{*}$ display insufficient entry and insufficient labor allocation, whereas sectors $j>j^{*}$ display excess entry and excess labor allocation. The equilibrium labor allocation and entry in the cara case are optimal if and only if all θ_{j} 's, and thus all k_{j} 's, are the same across sectors.

Proof See above.
Corollary 2 states that sectors with larger values of k_{j} (i.e., sectors where a larger mass of the productivity distribution is concentrated on low-productivity firms) are more likely to display excess entry and excess labor allocation in equilibrium. As mentioned after Proposition 6 , sectors with larger values of k_{j} also display smaller cutoff distortions. Thus, more
excessive entry comes with more efficient selection. Furthermore, Corollary 2 shows that all sectors with θ_{j} above the weighted average $\sum_{\ell=1}^{J} \beta_{\ell} \theta_{\ell}$ display excess entry and labor allocation, whereas the opposite is true for all sectors with θ_{j} below that threshold. Hence, interdependence of heterogeneous sectors matters for those distortions: If there is no heterogeneity in k_{j}, then the labor allocation and entry are efficient although the cutoffs and quantities are inefficient in all sectors.

4 Quantification

In this section, we take our model to the data in order to quantify the gap between the equilibrium and optimal allocations. ${ }^{15}$ Our approach is based on the two examples in the previous section, and only requires data that is accessible for many countries. In particular, we need the expenditure shares across sectors, and some aggregate statistics of the firmsize distribution within sectors. We make use of firm-level data from France in 2008 and from the United Kingdom (UK) in 2005. Using two different countries enables us to assess the robustness of our quantification approach, and to compare the distortions in those two different cases.

We first focus on the ves model from Section 3.2 that captures all types of distortions. We then quantify the ces model from Section 3.1, where cutoff and output distortions are absent. Finally, we put the quantitative predictions of the two models into perspective.

4.1 Data

Our quantification procedure requires firm-level employment data, as well as expenditure shares and R\&D outlays at the sectoral level. ${ }^{16}$ For France, the firm-level employment data comes from the 'Élaboration des Statistiques Annuelles d'Entreprises' (EsANE) database, which combines administrative and survey data to produce structural business statistics. We use the administrative part of the dataset that contains employment figures for almost all business organizations in France. It is compiled from annual tax returns that companies file to the tax authorities and from annual social security data that supply information on the employees. We focus on the year 2008, for which there are $1,100,220$ firms with positive

[^11]employment records. ${ }^{17}$ For each firm, we also have information about its sectoral affiliation. The French input-output tables contain information on 35 sectors, the public sector plus 34 private sectors, roughly corresponding to 2-digit NACE (revision 1.1) codes. This dictates the level of aggregation in our analysis. We discard the public sector $(12.12 \%$ of expenditure) and focus on the remaining 34 private sectors. For those sectors, we obtain expenditure shares, \widehat{e}_{j}, by re-scaling total expenditure such that the shares sum up to one. These observed expenditure shares are reported in Table 1.

The data for the UK have the same structure. We use the 'Business Structure Database' (BSD), which contains a small number of variables, including employment and sectoral affiliation, for almost all business organizations in the UK. The bSD is derived primarily from the 'Inter-Departmental Business Register' (IDBR), which is a live register of data collected by 'Her Majesty's Revenue and Customs' (hmRc) via VAT and 'Pay As You Earn' (paye) records. We focus on the year 2005 for which there are $1,704,543$ firms with positive employment records (excluding the firm owners). We can distinguish the exact same 34 sectors as for France for the sectoral affiliation of those firms, for which we obtain expenditure shares from the British input-output tables. These observed expenditure shares, \widehat{e}_{j}, re-scaled again to sum to one, are reported in Table 2.

4.2 Quantifying distortions: the cara subutility case

To quantify the ves model, we first match a theory-based moment of the sector-specific firmsize distribution to its empirical counterpart. To this end, we derive an analytical expression for the standard deviation of (log) firm-level employment in sector j, excluding the labor input F_{j} that all firms have to bear as a sunk entry cost. The resulting expression depends only on the shape parameter k_{j} of the sector-specific Pareto productivity distribution (see equation (C-1) in Appendix C.2). To construct its empirical counterpart, we compute for each sector j the ratio of R\&D expenditure (our proxy for sunk entry costs) to gross output and then multiply the ratio by total employment in that sector. Dividing this by the number of firms gives us a measure for F_{j}, which we then subtract from the total employment of each firm in the respective sector (see Appendix C.ı for more details). Finally, we calculate for each sector j the standard deviation of the resulting (log) number of employees. This data moment and the number of firms in each sector are reported in Table 1 for France, and in Table 2 for the UK.

[^12]With the standard deviation of the (log) number of employees at hand, we can then uniquely back out \widehat{k}_{j} for each sector and compute $\widehat{\theta}_{j}$ and $\widehat{\kappa}_{j}$, which depend solely on \widehat{k}_{j}. Using $\widehat{\theta}_{j}$ and the observed expenditure shares \widehat{e}_{j}, we obtain $\widehat{\beta}_{j}$ by solving $\sum_{\ell=1}^{J} \widehat{\beta}_{\ell}=1$ and $\widehat{e}_{j}=\widehat{\beta}_{j} \widehat{\theta}_{j} / \sum_{\ell=1}^{J} \widehat{\beta}_{\ell} \widehat{\theta}_{\ell}$, which corresponds to (8) in the case of Cobb-Douglas upper-tier utility and cara subutility functions. We can proceed in a similar way in the case of ces upper-tier utility, and the details are provided in the supplementary Appendix F.

We summarize the structural parameters that we obtain for the two countries in Tables 1 and 2. Observe the substantial heterogeneity across French sectors: the shape parameters \widehat{k}_{j} of the sectoral Pareto distributions range from 2.0 to 24.3 , with an (unweighted) average of 5.7. In the UK, the differences are even larger, as the values of \widehat{k}_{j} range from 1.5 to 41.3, with an (unweighted) average of 7.4.

Cutoff distortions. Given the values of $\widehat{k}_{j}, \widehat{\theta}_{j}, \widehat{\kappa}_{j}$, and $\widehat{\beta}_{j}$, we are now in a position to quantify the distortions in France and in the UK. We first compare the equilibrium and optimal cutoffs in each sector. Using the expressions in (27), we compute for each sector j the following measure of cutoff distortions:

$$
\begin{equation*}
\frac{\left(m_{j}^{d}\right)^{\mathrm{eqm}}-\left(m_{j}^{d}\right)^{\mathrm{opt}}}{\left(m_{j}^{d}\right)^{\mathrm{opt}}} \times 100=\left\{\left[\kappa_{j}\left(k_{j}+1\right)^{2}\right]^{-\frac{1}{k_{j}+1}}-1\right\} \times 100 \tag{31}
\end{equation*}
$$

which depends only on k_{j} as κ_{j} is a function of k_{j} only. Since there is too little selection by Proposition $6,\left(m_{j}^{d}\right)^{\text {eqm }}>\left(m_{j}^{d}\right)^{\text {opt }}$ holds, so that expression (31) is always positive. The gap between the equilibrium and optimal cutoffs is smaller the larger is the sectoral shape parameter k_{j}, i.e., a larger mass of the productivity distribution is concentrated on lowproductivity firms.

Tables 1 and 2 report the magnitudes of cutoff distortions for all sectors in France and the UK, which we illustrate in Figures 1 and 2 for those two countries. We find substantial distortions due to insufficient selection. For France, the simple average across sectors is 15.9%, but with huge sectoral variation from only 2.8% to almost 30%. In the UK, the average is 16.7% and the range goes from 1.7% to 37.8%. The correlation of those distortions between the two countries is 0.356 , while the Spearman rank correlation is 0.328 . Thus, the model makes roughly similar predictions on which sectors in France and the UK exhibit greater cutoff distortions. We discuss this point in more detail below.

Entry distortions. Turning to the gap between the equilibrium and optimal entry, or equivalently the gap between the equilibrium and optimal labor allocations in our examples, we

Table 1: Sectoral data, parameter values, and distortions for France in 2008.

					CARA + Cobb-Douglas \& Pareto						CES + Cobb-Douglas \& Pareto			
Sector	Description	Firms	\widehat{e}_{j}	Std. dev. log emp	\widehat{k}_{j}	$\widehat{\theta}_{j}$	$\widehat{\kappa}_{j}$	$\widehat{\beta}_{j}$	Cutoff distor	Entry tions	$\widehat{\rho}_{j}$	$\widehat{\beta}_{j}$		Entry rtions
1	Agriculture	5551	0.0188	1.0038	2.8670	0.8721	0.0312	0.0188	21.8406	-0.1886	0.7421	0.0188	O	0.3470
2	Mining and quarrying	1132	0.0002	1.0523	3.5570	0.8911	0.0227	0.0002	17.9533	1.9848	0.7892	0.0002	O	6.7070
3	Food products, beverages, tobacco	38582	0.0697	0.9858	2.6642	0.8653	0.0346	0.0704	23.3225	-0.9765	0.7242	0.0697	0	-2.0711
4	Textiles, leather and footwear	4889	0.0205	1.0354	3.2891	0.8845	0.0255	0.0203	19.2867	1.2213	0.7730	0.0205	o	4.5251
5	Wood products	4607	0.0008	1.1811	8.4447	0.9471	0.0055	0.0007	7.9290	8.3958	0.9089	0.0008	o	22.8950
6	Pulp, paper, printing and publishing	12136	0.0086	1.1805	8.3928	0.9469	0.0055	0.0079	7.9764	8.3625	0.9083	0.0086	o	22.8198
7	Coke, refined petroleum, nuclear fuel	27	0.0168	1.1447	6.1501	0.9303	0.0094	0.0158	10.7480	6.4650	0.8756	0.0168	o	18.3985
8	Chemicals and chemical products	1194	0.0285	1.1688	7.5071	0.9413	0.0067	0.0264	8.8810	7.7318	0.8977	0.0285	O	21.3827
9	Rubber and plastics products	2760	0.0037	1.0332	3.2565	0.8836	0.0259	0.0037	19.4626	1.1220	0.7709	0.0037	O	4.2374
10	Other non-metallic mineral products	3426	0.0020	1.0428	3.4013	0.8873	0.0243	0.0019	18.7050	1.5521	0.7801	0.0020	O	5.4774
11	Basic metals	602	0.0001	1.2166	13.1203	0.9646	0.0025	0.0001	5.1666	10.3951	0.9410	0.0001	o	27.2453
12	Fabricated metal products	17249	0.0021	1.1442	6.1290	0.9301	0.0095	0.0020	10.7833	6.4415	0.8752	0.0021	o	18.3419
13	Machinery and equipment	8227	0.0053	1.1003	4.5835	0.9109	0.0153	0.0050	14.1902	4.2470	0.8345	0.0053	o	12.8416
14	Office, accounting, computing mach.	160	0.0033	1.0684	3.8519	0.8976	0.0201	0.0032	16.6828	2.7305	0.8045	0.0033	O	8.7831
15	Electrical machinery and apparatus	1656	0.0034	1.2466	24.2501	0.9802	0.0008	0.0030	2.8241	12.1791	0.9680	0.0034	-	30.8871
16	Radio, TV, communication equip.	786	0.0042	1.1439	6.1119	0.9299	0.0095	0.0040	10.8121	6.4223	0.8749	0.0042	o	18.2957
17	Medical, precision, optical instr.	3753	0.0050	1.0383	3.3327	0.8856	0.0250	0.0049	19.0565	1.3517	0.7758	0.0050	o	4.9020
18	Motor vehicles and (semi-)trailers	835	0.0326	1.1046	4.7020	0.9127	0.0147	0.0312	13.8546	4.4568	0.8386	0.0326	o	13.3862
19	Other transport equipment	452	0.0028	1.1128	4.9432	0.9162	0.0135	0.0026	13.2186	4.8581	0.8462	0.0028	o	14.4165
20	Manufacturing n.e.c; recycling	9802	0.0130	1.1760	8.0324	0.9447	0.0060	0.0120	8.3212	8.1207	0.9043	0.0130	o	22.2727
21	Electricity, gas and water supply	1279	0.0225	0.9745	2.5480	0.8610	0.0368	0.0228	24.2650	-1.4664	0.7129	0.0225	o	-3.6039
22	Construction	188513	0.0082	0.9992	2.8127	0.8704	0.0320	0.0083	22.2182	-0.3915	0.7376	0.0082	O	-0.2700
23	Wholesale and retail trade; repairs	274437	0.1377	1.0151	3.0067	0.8765	0.0291	0.1373	20.9236	0.3099	0.7532	0.1377	O	1.8463
24	Hotels and restaurants	113317	0.0489	0.9489	2.3083	0.8512	0.0420	0.0502	26.4702	-2.5803	0.6866	0.0489	O	-7.1669
25	Transport and storage	26847	0.0291	0.9962	2.7783	0.8692	0.0326	0.0292	22.4649	-0.5232	0.7346	0.0291	O	-0.6727
26	Post and telecommunications	1144	0.0191	1.0374	3.3186	0.8852	0.0252	0.0188	19.1303	1.3099	0.7749	0.0191	O	4.7813
27	Finance and insurance	12383	0.0376	0.9141	2.0264	0.8379	0.0498	0.0393	29.6331	-4.1024	0.6494	0.0376	O	-12.1881
28	Real estate activities	36902	0.1649	0.9517	2.3334	0.8523	0.0414	0.1691	26.2215	-2.4570	0.6895	0.1649	O	-6.7672
29	Renting of machinery and equipment	4815	0.0022	1.1101	4.8613	0.9151	0.0139	0.0021	13.4279	4.7255	0.8437	0.0022	0	14.0777
30	Computer and related activities	16355	0.0010	1.1944	9.7504	0.9535	0.0042	0.0010	6.8991	9.1285	0.9209	0.0010	O	24.5238
31	Research and development	1562	0.0074	1.2375	19.2934	0.9754	0.0012	0.0067	3.5386	11.6260	0.9598	0.0074	O	29.7810
32	Other Business Activities	132159	0.0073	1.0964	4.4803	0.9092	0.0159	0.0070	14.4958	4.0571	0.8309	0.0073	O	12.3453
33	Education	11401	0.0799	1.0726	3.9371	0.8994	0.0194	0.0776	16.3484	2.9297	0.8085	0.0799	O	9.3287
34	Health, social work, personal services	124202	0.1930	0.9659	2.4642	0.8577	0.0385	0.1966	24.9935	-1.8394	0.7042	0.1930	0	-4.7851

Notes: Column 1 reports the number of firms in each sector in the esANE database for France in 2008, column 2 the observed (rescaled) expenditure shares from the French input-output table, and column 3 the observed standard deviation of the log number of employees across firms, where data are constructed as described in Appendix C.1. Column 4 reports the values of \widehat{k}_{j} that we obtain by matching the numbers from column 3 to expression (C-1) in Appendix C.2. Columns 5 and 6 report the values of $\widehat{\theta}_{j}$ and $\widehat{\kappa}_{j}$ which are transformations of \widehat{k}_{j}. Column 7 reports the value $\widehat{\beta}_{j}$ obtained as described in Section 4.1. In columns 8 and 9 we report the magnitudes of cutoff and entry distortions at the sectoral level obtained from (31) and (32), respectively. Column 10 reports the value of $\widehat{\rho}_{j}$ obtained by matching the numbers from column 3 to expression (C-2) in Appendix C. 2 while using \widehat{k}_{j} from column 4. Column 11 reports the values $\widehat{\beta}_{j}$ which correspond to the expenditure shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13 reports the magnitudes of entry distortions as computed in (35).

Table 2: Sectoral data, parameter values, and distortions for the United Kingdom in 2005.

Sector	Description	Firms	\widehat{e}_{j}	Std. dev. log emp	CARA + Cobb-Douglas \& Pareto						CES + Cobb-Douglas \& Pareto			
					\widehat{k}_{j}	$\widehat{\theta}_{j}$			Cutoff disto	Entry tions				Entry rtions
Sector	Agriculture	57969	${ }_{0}{ }_{j}$	$\frac{\log \text { emp }}{0.8424}$	${ }^{1.5152}$	${ }_{0} 0.8069$	${ }^{\kappa_{j}} 0.0706$	$\frac{\hat{\beta}_{j}}{0.0138}$	37.7850	-8.1349	${ }^{\rho_{j}}$	$\hat{\beta}_{j}$,	-24.3233
2	Mining and quarrying	1124	0.0008	1.2580	35.5036	0.9863	0.0004	0.0007	1.9363	12.2922	0.9781	0.0008	O	32.0111
3	Food products, beverages. tobacco	4606	0.0442	1.1260	5.3830	0.9220	0.0118	0.0421	12.1970	4.9662	0.8584	0.0442	O	15.8529
4	Textiles, leather and footwear	9041	0.0213	1.1829	8.6063	0.9480	0.0053	0.0198	7.7852	7.9348	0.9106	0.0213	O	22.8954
5	Wood products	7301	0.0014	1.1079	4.7949	0.9141	0.0142	0.0013	13.6024	4.0730	0.8416	0.0014	O	13.5846
6	Pulp, paper, printing and publishing	24882	0.0112	1.1142	4.9862	0.9168	0.0133	0.0108	13.1112	4.3825	0.8475	0.0112	o	14.3787
7	Coke, refined petroleum, nuclear fuel	122	0.0104	1.1442	6.1295	0.9301	0.0095	0.0098	10.7826	5.8902	0.8752	0.0104	O	18.1245
8	Chemicals and chemical products	1989	0.0088	1.2614	41.2898	0.9882	0.0003	0.0079	1.6669	12.5055	0.9812	0.0088	O	32.4242
9	Rubber and plastics products	5152	0.0035	1.1077	4.7899	0.9140	0.0142	0.0034	13.6159	4.0646	0.8414	0.0035	O	13.5630
10	Other non-metallic mineral products	3412	0.0017	1.0171	3.0332	0.8773	0.0287	0.0017	20.7588	-0.1201	0.7552	0.0017	O	1.9273
11	Basic metals	1203	0.0003	1.1800	8.3555	0.9466	0.0056	0.0002	8.0108	7.7767	0.9079	0.0003	O	22.5386
12	Fabricated metal products	24116	0.0019	1.2025	10.7654	0.9575	0.0035	0.0017	6.2663	9.0180	0.9283	0.0019	O	25.2887
13	Machinery and equipment	8719	0.0064	1.1206	5.1953	0.9196	0.0125	0.0061	12.6131	4.6993	0.8534	0.0064	O	15.1825
14	Office, accounting, computing mach.	898	0.0006	1.0715	3.9145	0.8989	0.0196	0.0006	16.4360	2.3441	0.8075	0.0006	o	8.9841
15	Electrical machinery and apparatus	2694	0.0015	1.0675	3.8347	0.8973	0.0202	0.0014	16.7521	2.1569	0.8037	0.0015	o	8.4690
16	Radio, TV, communication equip.	1004	0.0057	1.2070	11.4206	0.9598	0.0032	0.0052	5.9160	9.2724	0.9324	0.0057	o	25.8380
17	Medical, precision, optical instr.	2443	0.0016	1.0956	4.4595	0.9089	0.0160	0.0016	14.5590	3.4788	0.8301	0.0016	o	12.0353
18	Motor vehicles and (semi-)trailers	2059	0.0272	1.1459	6.2088	0.9308	0.0093	0.0256	10.6513	5.9773	0.8768	0.0272	o	18.3347
19	Other transport equipment	1012	0.0036	1.2551	31.7979	0.9848	0.0005	0.0032	2.1599	12.1161	0.9756	0.0036	o	31.6677
20	Manufacturing n.e.c; recycling	16028	0.0109	1.0735	3.9535	0.8997	0.0193	0.0107	16.2857	2.4335	0.8093	0.0109	o	9.2289
21	Electricity, gas and water supply	428	0.0261	1.1854	8.8336	0.9492	0.0050	0.0241	7.5915	8.0711	0.9128	0.0261	o	23.2015
22	Construction	156266	0.0085	0.9638	2.4443	0.8569	0.0389	0.0087	25.1733	-2.4391	0.7020	0.0085	o	-5.2515
23	Wholesale and retail trade; repairs	306437	0.1850	0.9788	2.5911	0.8626	0.0359	0.1884	23.9071	-1.7932	0.7172	0.1850	-	-3.2016
24	Hotels and restaurants	130213	0.0781	0.9975	2.7940	0.8697	0.0323	0.0789	22.3519	-0.9789	0.7359	0.0781	o	-0.6720
25	Transport and storage	31912	0.0392	0.9289	2.1417	0.8436	0.0464	0.0408	28.2533	-3.9495	0.6655	0.0392	o	-10.1799
26	Post and telecommunications	4654	0.0181	0.9526	2.3417	0.8527	0.0412	0.0186	26.1401	-2.9224	0.6905	0.0181	o	-6.8087
27	Finance and insurance	15890	0.0807	0.9190	2.0638	0.8398	0.0486	0.0844	29.1713	-4.3838	0.6548	0.0807	o	-11.6270
28	Real estate activities	80146	0.1104	0.8570	1.6199	0.8141	0.0654	0.1192	35.7739	-7.3083	0.5813	0.1104	o	-21.5440
29	Renting of machinery and equipment	13615	0.0061	1.0636	3.7599	0.8957	0.0209	0.0059	17.0596	1.9760	0.8000	0.0061	o	7.9678
30	Computer and related activities	102580	0.0010	0.8645	1.6720	0.8176	0.0630	0.0010	34.8511	-6.9194	0.5911	0.0010	O	-20.2240
31	Research and development	1603	0.0001	1.0575	3.6486	0.8932	0.0218	0.0001	17.5386	1.6963	0.7942	0.0001	o	7.1867
32	Other Business Activities	371014	0.0041	0.9100	1.9952	0.8363	0.0508	0.0043	30.0287	-4.7829	0.6448	0.0041	o	-12.9669
34	Education	23494	0.0625	1.1440	6.1179	0.9300	0.0095	0.0591	10.8019	5.8774	0.8750	0.0625	o	18.0934
35	Health, social work, personal services	215336	0.2044	1.0816	4.1275	0.9031	0.0180	0.1988	15.6477	2.8157	0.8170	0.2044	0	10.2671

Notes: Column 1 reports the number of firms in each sector in the BSD database for the UK in 2005, column 2 the observed (rescaled) expenditure shares from the UK input-output table, and column 3 the observed standard deviation of the log number of employees across firms, where data are constructed as described in Appendix C.1. Column 4 reports the values of \widehat{k}_{j} that we obtain by matching the numbers from column 3 to expression (C-1) in Appendix C.2. Columns 5 and 6 report the values of $\widehat{\theta}_{j}$ and $\widehat{\kappa}_{j}$ which are transformations of \widehat{k}_{j}. Column 7 reports the value $\widehat{\beta}_{j}$ obtained as described in Section 4.1. In columns 8 and 9 we report the magnitudes of cutoff and entry distortions at the sectoral level obtained from (31) and (32), respectively. Column 10 reports the value of $\widehat{\rho}_{j}$ obtained by matching the numbers from column 3 to expression (C-2) in Appendix C. 2 while using \widehat{k}_{j} from column 4. Column 11 reports the values $\widehat{\beta}_{j}$ which correspond to the expenditure shares from column 2. Finally, column 12 reports only zeroes as the ces model does not exhibit cutoff distortions, and column 13 reports the magnitudes of entry distortions as computed in (35).
use expressions (28) and Proposition 5, together with (29), to compute the following measure of intersectoral distortions for each sector j :

$$
\begin{equation*}
\frac{\left(N_{j}^{E}\right)^{\mathrm{eqm}}-\left(N_{j}^{E}\right)^{\mathrm{opt}}}{\left(N_{j}^{E}\right)^{\mathrm{opt}}} \times 100=\frac{\left(L_{j}\right)^{\mathrm{eqm}}-\left(L_{j}\right)^{\mathrm{opt}}}{\left(L_{j}\right)^{\mathrm{opt}}} \times 100=\left(\frac{\theta_{j}}{\sum_{\ell=1}^{J} \beta_{\ell} \theta_{\ell}}-1\right) \times 100 \tag{32}
\end{equation*}
$$

Based on (32), our model predicts that 25 sectors in the French economy exhibit excess entry by up to 12.2%. The remaining 9 sectors display insufficient entry by up to -4.1%. In the UK, excess entry arises in 23 sectors, whereas insufficient entry occurs in 11 sectors, with a range of entry distortions from -8.1% to 12.5%. See Tables 1 and 2 for the detailed numbers, and Figures 1 and 2 for a graphical illustration of those distortions.

Digging deeper into these patterns, we find some similarities between France and the UK. In both countries, excess entry typically (though not always) occurs in manufacturing. See, for example, [11] 'Basic metals' and [15] 'Electrical machinery and apparatus' in France, or [8] 'Chemical products' and [19] 'Transport equipment' in the UK, where it is particularly strong. By contrast, insufficient entry is almost exclusively a phenomenon of service sectors. ${ }^{18}$ See, for example, [24] 'Hotels and restaurants' and [27] 'Finance and insurance' in France, or [28] 'Real estate' and [32] 'Other business services' in the UK, where we find strongly negative values. Overall, the correlation of entry distortions across sectors in the two countries is 0.330 and the Spearman rank correlation is 0.328 . Furthermore, the direction or 'sign' of inefficient entry is the same in 26 out of 34 sectors, i.e., in more than three-quarter of the sectors. Put differently, the model makes similar predictions as to which sectors in the two countries tend to display excessive or insufficient entry.

Recall that in the cara model the larger the value of k_{j}, the more excessive is the firm entry (and the labor allocation) but the smaller is the magnitude of insufficient selection. In other words, manufacturing sectors in both countries not only tend to exhibit excess entry, but also display relatively smaller cutoff distortions, i.e., equilibrium firm selection relatively closer to the optimum. By contrast, there are too few entrants in many service sectors, and firm selection is far less severe than it should be from a social point of view. It is worth emphasizing that those predictions are based on a full-fledged general equilibrium model that recognizes all interdependencies across sectors in the economy. Thus, our analysis is in contrast to the conventional approach in industrial organization that has typically studied

[^13]Figure 1: Cutoff and entry disortions, cara model for France in 2008.
[34] Health, social work, personal services
[33] Education
[32] Other business services [31] Research and development [30] Computer and related activities [29] Renting of machinery and equipment
[28] Real estate activities [26] Post and telecommunications
[25] Transport and storage [24] Hotels and restaurants
[23] Wholesale and retail trade; repairs
[22] Construction
[21] Electricity, gas and water supply
[20] Manufacturing n.e.c; recycling [19] Other transport equipment
[18] Motor vehicles and (semi-)trailers
[17] Medical, precision, optical instr.
16] Radio, TV, communication equip.
[16] Radio, TV, communication equip.
[15] Electrical machinery and apparatus [14] Office, accounting, computing mach.
[13] Machinery and equipment
[12] Fabricated metal products
[11] Basic metals
[10] Other non-metallic mineral products
[9] Rubber and plastics products [8] Chemicals and chemical products [7] Coke, refined petroleum, nuclear fuel [6] Pulp, paper, printing and publishing [5] Wood products [3] Food products, beverages, tobacco [2] Mining and quarrying
[1] Agriculture

Figure 2: Cutoff and entry disortions, cara model for the United Kingdom in 2005.
[34] Health, social work, personal services
[33] Education
[32] Other business services
[31] Research and development [30] Computer and related activities [29] Renting of machinery and equipment
[28] Real estate activities
[27] Finance and insurance [26] Post and telecommunications
[25] Transport and storage
[24] Hotels and restaurants
[23] Wholesale and retail trade; repairs
[22] Construction
[21] Electricity, gas and water supply [20] Manufacturing n.e.c; recycling [19] Other transport equipment
[18] Motor vehicles and (semi-)trailers
[17] Medical, precision, optical instr.
[16] Radio, TV, communication equip. [15] Electrical machinery and apparatus [14] Office, accounting, computing mach.
[13] Machinery and equipment
[12] Fabricated metal products
[11] Basic metals
[10] Other non-metallic mineral products
[9] Rubber and plastics products [8] Chemicals and chemical products [7] Coke, refined petroleum, nuclear fuel [6] Pulp, paper, printing and publishing [5] Wood products [3] [4] Textiles, leather and footwea [3] Food products, beverages, tobacco [2] Mining and quarrying
[1] Agriculture

entry and selection for a single industry in partial equilibrium.

Aggregate welfare distortion. Having analyzed cutoff and entry distortions in each sector, we now consider the aggregate welfare distortion in the economy. To this end, we use the concept of the Allais surplus (Allais, 1943, 1977) since compensating and equivalent variations, which are used to analyze the welfare change between two equilibria, are not readily applicable to measuring the welfare distortion, i.e., the welfare gap between the equilibrium and optimum. Intuitively, we measure the amount of labor - which is taken as the numeraire that can be saved when the planner minimizes the resource cost of attaining the equilibrium utility level.

Let $L^{A}\left(U^{\mathrm{eqm}}\right)$ denote the minimum amount of labor that the social planner requires to attain the equilibrium utility level. By construction, $L^{A}\left(U^{\mathrm{eqm}}\right)$ is not greater than the amount of labor L that the market economy requires to reach the equilibrium utility level because the labor market clears in equilibrium and because their may be distortions. As shown in Appendix D, we can define a measure of the aggregate welfare distortion based on the Allais surplus as follows:

$$
\begin{equation*}
-\frac{L^{A}\left(U^{\mathrm{eqm}}\right)-L}{L} \times 100=\left\{1-\frac{\prod_{j=1}^{J}\left[\left(k_{j}+1\right)^{2} \kappa_{j}\right]^{\frac{\beta_{j}}{k_{j}+1}}}{\sum_{\ell=1}^{J} \beta_{\ell} \theta_{\ell}}\right\} \times 100 \tag{33}
\end{equation*}
$$

Plugging the values of $\widehat{k}_{j}, \widehat{\theta}_{j}, \widehat{\kappa}_{j}$, and $\widehat{\beta}_{j}$ from Tables 1 and 2 into (33), we can compute the magnitude of the aggregate welfare distortion in France and in the UK, respectively.

Table 3: Aggregate welfare distortions as measured by the Allais surplus.

	France		UK	
	VES	CES	VES	CES
Aggregate distortion (\% of aggregate labor input saved)	5.93	0.34	5.85	0.99
Cutoff and quantity distortion	81.81	0	95.11	0
Entry and labor distortion (as \% of aggregate distortion)	18.19	100	4.89	100

Table 3 summarizes our results. For France, the aggregate welfare distortion is 5.93%, and for the UK it is 5.85%. In words, to achieve the equilibrium utility level in each of the two countries, the social planner requires almost 6% less aggregate labor input when
compared to the case with utility maximizing consumers and profit maximizing firms.
Disentangling the relative contribution of the cutoff and the entry distortion is difficult, since it is generally not possible to shut down one without affecting the other. ${ }^{19}$ To gauge the potential importance of within and between sector distortions, we hence proceed as follows. We pool our data across all sectors and proceed as if there were only a single sector. Distortions in the labor allocation cannot arise in this single-sector case - since by definition $L_{j}^{\mathrm{eqm}}=L_{j}^{\mathrm{opt}}=L$ - and entry is efficient by (28). Therefore, the welfare gap between the equilibrium and optimum depends only on cutoff and output distortions. We then estimate the value of k for that single sector in the same way as before, by matching the standard deviation of the (log) employment distribution across all firms. This yields $\widehat{k}=3.5687$ for France and $\widehat{k}=3.0598$ for the UK. Plugging that common value into (33), we compute the associated Allais surplus for the single-sector economy and compare it with the Allais surplus in the multi-sector case. The results are summarized in the bottom part of Table 3. As can be seen, the distortions in the single-sector case are 18.19% smaller for France, and 4.89% smaller for the UK. Put differently, disregarding entry and labor distortions would lead to an underestimation of the aggregate welfare distortion by $5 \%-18 \%$ in our CARA example with a Cobb-Douglas upper-tier utility function.

Figure 3: Aggregate welfare distortions in the ces-cara model as a function of σ.
(a) France.
(b) UK.

Robustness check. We have also conducted a robustness check with respect to the choice of the upper-tier utility function. In particular, we have replaced the Cobb-Douglas uppertier function with the ces function $U=\left\{\sum_{j=1}^{J} \beta_{j}\left[\widetilde{U}_{j}\left(U_{j}\right)\right]^{(\sigma-1) / \sigma}\right\}^{\sigma /(\sigma-1)}$, and the Allais

[^14]surplus for that case with ces upper-tier utility and CARA subutility is given by (see the supplementary Appendix F for details):
\[

$$
\begin{equation*}
-\frac{L^{A}\left(U^{\mathrm{eqm}}\right)-L}{L} \times 100=\left[1-\frac{1}{\sum_{\ell=1}^{J} \beta_{\ell} \theta_{\ell}} \cdot\left\{\sum_{j=1}^{J} \beta_{j}\left[\left(k_{j}+1\right)^{2} \kappa_{j}\right]^{\frac{1-\sigma}{k_{j}+1}}\right\}^{\frac{1}{1-\sigma}}\right] \times 100 . \tag{34}
\end{equation*}
$$

\]

Notice that, once we choose a value of σ, this expression for the aggregate welfare distortion can be computed using $\widehat{k}_{j}, \widehat{\theta}_{j}, \widehat{\kappa}_{j}$, and $\widehat{\beta}_{j}$ from Tables 1 and 2 , respectively.

Figure 3 illustrates the magnitude of the aggregate welfare distortion given by (34) as a function of σ for France (panel (a)) and the UK (panel (b)). We find that the higher is the elasticity of substitution between sectors, the stronger is the aggregate welfare distortion in both countries. It ranges between 6% and 7% in France, and between 6% and 8% in the UK. Treating the economy as if it consisted of a single sector, as before, we re-quantify the magnitude of entry and labor distortions. For $\sigma \in(1,10)$, it ranges between 18% and 27% in France, and between 5% and 29% in the UK. Thus, the higher the elasticity of substitution for the upper-tier utility function, the stronger the underestimation of the aggregate welfare distortion due to inefficient entry and labor allocation, and it can reach almost 30% for reasonable parameter values.

4.3 Quantifying distortions: the CES subutility case

Finally, we quantify the workhorse model with Cobb-Douglas upper-tier and ces subutility functions. Recall that there are no cutoff distortions with ces subutility functions. However, by Corollary 1, there are still labor and entry distortions due to heterogeneity in the real revenue-to-utility ratio R_{j} / U_{j} and in the elasticity of upper-tier utility $\mathcal{E}_{U, U_{j}}$ when the ρ_{j} terms differ across sectors. How large are the welfare distortions for France and the UK predicted by the ces model?

To quantify this model, we use the same sector-specific statistics as before: the standard deviation of (log) firm-level employment, not including the labor input for R\&D which we use as a proxy for sunk entry and fixed costs. To match this observed data moment, we also assume sector-specific Pareto distributions for productivity draws, and then derive the corresponding theoretical expression for the ces case. As can be seen from equation (C-2) in Appendix C.2, this expression now depends on two parameters: ρ_{j} and k_{j}. Since the k_{j} 's are technology parameters that do not depend on consumer preferences, we keep the same values of \widehat{k}_{j} from the ves model above. We can then uniquely back out the corresponding
values for $\widehat{\rho}_{j}$. Since by (22) the equilibrium expenditure share is β_{j} for this case, the value of $\widehat{\beta}_{j}$ for each sector can be obtained by setting $\widehat{\beta}_{j}=\widehat{e}_{j}$, where $\sum_{j=1}^{J} \widehat{\beta}_{j}=\sum_{j=1}^{J} \widehat{e}_{j}=1$ by definition of the observed expenditure share.

The parameter values thus obtained for France and the UK are reported in Tables 1 and 2. Equipped with those numbers, we can quantify the magnitude of entry distortions for each sector j as follows:

$$
\begin{equation*}
\frac{\left(N_{j}^{E}\right)^{\mathrm{eqm}}-\left(N_{j}^{E}\right)^{\mathrm{opt}}}{\left(N_{j}^{E}\right)^{\mathrm{opt}}} \times 100=\frac{L_{j}^{\mathrm{eqm}}-L_{j}^{\mathrm{opt}}}{L_{j}^{\mathrm{opt}}} \times 100=\left(\rho_{j} \sum_{\ell=1}^{J} \frac{\beta_{\ell}}{\rho_{\ell}}-1\right) \times 100 \tag{35}
\end{equation*}
$$

As can be seen from Tables 1 and 2, in both countries the ces and ves models make very similar predictions as to which sectors display excess or insufficient entry. Yet, the ces model implies larger magnitudes than the ves model. In France, the range of inefficient entry and labor allocation goes from -12.2% to 30.9%, and in the UK from -24.3% to 32.4%.

To quantify the aggregate welfare distortion, we again rely on the Allais surplus and compute the following expression (see Appendix D for details):

$$
\begin{equation*}
-\frac{L^{A}\left(U^{\mathrm{eqm}}\right)-L}{L} \times 100=\left[1-\prod_{j=1}^{J}\left(\rho_{j} \sum_{\ell=1}^{J} \frac{\beta_{\ell}}{\rho_{\ell}}\right)^{\frac{\beta_{j} / \rho_{j}}{\Sigma_{\ell=1}^{J}\left(\beta_{\ell} / \rho_{\ell}\right)}}\right] \times 100 . \tag{36}
\end{equation*}
$$

The results are 0.34% for France, and 0.99% for the UK, as summarized in Table 3. In other words, less than 1% of the aggregate labor input could be saved if the social planner minimized the resource cost to attain the equilibrium utility level. Compared to the ves model, where the corresponding number is roughly 6%, it appears that the aggregate welfare distortion in the ces model is much smaller than that in the ves model. However, correcting the inefficiencies between sectors would still lead to substantial changes in entry patterns and sectoral employment shares.

5 Conclusions

We have developed a general equilibrium model of monopolistic competition with multiple sectors and heterogeneous firms. Comparing the equilibrium and optimal allocations, we have characterized the various distortions that operate in our economy. Concrete specifications of our general model allow for closed-form solutions that can be readily taken to the data. Applying this approach to French data for 2008 and UK data for 2005, we have quan-
tified the aggregate welfare distortions while uncovering substantial sectoral heterogeneity and assessing contribution of each type of distortions to the overall welfare losses.

Our preferred specification implies substantial aggregate welfare distortions for France and for the UK, each of which amounts to almost 6% of the respective economy's aggregate labor input. Our results suggest that inefficiencies within and between sectors both matter in practice. Removing those distortions would presumably require rather different interventions: industrial policy tools to address the latter problem, combined with policies targeted at specific firms to address the former. A general lesson that one can deduce from our analysis is that interdependencies are important for the design of such programs: the optimal policy for one sector is not only influenced by conditions of that particular sector, but it depends on the characteristics of all sectors in the economy. We leave it to future work to explore the details of feasible policy schemes that alleviate misallocations. In this paper we have taken a first step, and provided a novel approach to derive quantitative predictions for the welfare distortion. More work is needed in the future to derive robust lessons for policy.

Acknowledgements. We thank Swati Dhingra, Tom Holmes, Sergey Kokovin, Kiminori Matsuyama, John Morrow, Mathieu Parenti, Jacques Thisse, Philip Ushchev, and seminar and conference participants at the 5th International Conference on Industrial Organization and Spatial Economics in St. Petersburg, the 14th SAET Conference at Waseda University, the 2015 Econometric Society World Congress in Montréal, the 15th SAET conference at the University of Cambridge, the 2016 UEA-ERSA sessions in Vienna, Paris School of Economics, Singapore Management University, National University of Singapore, University of Würzburg, and Otaru University of Commerce for valuable comments and suggestions. Behrens gratefully acknowledges financial support from the crc Program of the Social Sciences and Humanities Research Council (sshrc) of Canada for the funding of the Canada Research Chair in Regional Impacts of Globalization. Murata gratefully acknowledges financial support from the Japan Society for the Promotion of Science (26380326). Suedekum gratefully acknowledges financial support from the German National Science Foundation (DFG), grant SU-413/2-1. The study has been funded by the Russian Academic Excellence Project '5-100'. All remaining errors are ours.

References

[1] Allais, Maurice. 1943. A la Recherche d'une Discipline Économique, vol. I. Imprimerie Nationale, Paris.
[2] Allais, Maurice. 1977. "Theories of General Economic Equilibrium and Maximum Efficiency." In: Schwödiauer, Gerhard (Ed.), Equilibrium and Disequilibrium in Economic Theory. D. Reidel Publishing Company, Dordrecht, pp. 129-201.
[3] Behrens, Kristian, Giordano Mion, Yasusada Murata, and Jens Südekum. 2014. "Trade, Wages, and Productivity." International Economic Review 55(4): 1305-1348.
[4] Behrens, Kristian, and Yasusada Murata. 2007. "General Equilibrium Models of Monopolistic Competition: A New Approach." Journal of Economic Theory 136(1): 776-787.
[5] Corless, Robert M., Gaston H. Gonnet, D.E.G. Hare, David J. Jeffrey, and Donald E. Knuth. 1996. "On the Lambert W Function." Advances in Computational Mathematics 5(1): 329-359.
[6] Dhingra, Swati, and John Morrow. 2014. "Monopolistic Competition and Optimum Product Diversity under Firm Heterogeneity." Processed, London School of Economics.
[7] Dixit, Avinash K., and Joseph E. Stiglitz. 1977. "Monopolistic Competition and Optimum Product Diversity." American Economic Review 67(3): 297-308.
[8] Epifani, Paolo, and Gino Gancia. 2011. "Trade, Markup Heterogeneity, and Misallocations." Journal of International Economics 83(1): 1-13.
[9] Harberger, Arnold C. 1954. "Monopoly and Resource Allocation." American Economic Review 44(2): 77-87.
[10] Hsieh, Chang-Thai, and Peter J. Klenow. 2009. "Misallocation and Manufacturing TFP in China and India." Quarterly Journal of Economics 124(4): 1403-1448.
[11] Hottman, Colin, Stephen J. Redding, and David E. Weinstein. 2016. "Quantifying the Sources of Firm Heterogeneity." Quarterly Journal of Economics, forthcoming.
[12] Krugman, Paul. 1979. "Increasing Returns, Monopolistic Competition, and International Trade." Journal of International Economics 9: 469-479.
[13] Mankiw, A. Gregory, and Michael D. Whinston. 1986. "Free Entry and Social Inefficiency." RAND Journal of Economics 17(1): 48-58.
[14] Matsuyama, Kiminori. 1995. "Complementarities and Cumulative Processes in Models of Monopolistic Competition." Journal of Economic Literature 33(2): 701-729.
[15] Melitz, Marc J. 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," Econometrica 71(6): 1695-1725.
[16] Mrazova, Monika and J. Peter Neary. 2014. "Not so Demanding: Preference Structure, Firm Behavior, and Welfare." Processed, University of Oxford.
[17] Nocco, Antonella, Gianmarco Ottaviano, and Matteo Salto. 2014. "Monopolistic Competition and Optimum Product Selection." American Economic Review: Papers E Proceedings 104(5): 304-309.
[18] Parenti, Mathieu, Philip Ushchev and Jacques-François Thisse. 2016. "Toward a Theory of Monopolistic Competition." Journal of Economic Theory, forthcoming.
[19] Vives, Xavier. 1999. Oligopoly Pricing: Old Ideas and New Tools. Cambridge: mit Press.
[20] Weyl, E. Glen and Michal Fabinger. 2014. "Pass-through as an Economic Tool: Principles of Incidence under Imperfect Competition." Journal of Political Economy 121(4): 528-583.
[21] Yilmazkuday, Hakan. 2016 "Constant versus Variable Markups: Implications for the Law of One Price." International Review of Economics and Finance 44: 154-168.
[22] Zhelobodko, Evgeny, Sergey Kokovin, Mathieu Parenti, and Jacques-François Thisse. 2012. "Monopolistic Competition: Beyond the Constant Elasticity of Substitution." Econometrica 8o(6): 2765-2784.

Appendix

A. Proofs of the propositions

This appendix provides all the proofs of the propositions. To alleviate notation, we suppress indices for sectors and arguments wherever possible.
A.1. Proof of Proposition 1. This result can be established using a similar method as in Zhelobodko et al. (2012). However, we provide an alternative proof that can be readily applied to the optimal cutoff and quantities (see Appendix A.3). Using the profit-maximizing price (5) for the marginal variety, we can rewrite the zcP condition (6) as

$$
\frac{r_{u_{j}}\left(q_{j}^{d}\right)}{1-r_{u_{j}}\left(q_{j}^{d}\right)} m_{j}^{d} q_{j}^{d}=r_{u_{j}}\left(q_{j}^{d}\right) \frac{p_{j}^{d}}{w} q_{j}^{d}=\frac{f_{j}}{L}
$$

which, together with the first-order condition (2) for the marginal variety, $u_{j}^{\prime}\left(q_{j}^{d}\right)=\lambda_{j} p_{j}^{d}$, yields

$$
r_{u_{j}}\left(q_{j}^{d}\right) u_{j}^{\prime}\left(q_{j}^{d}\right) q_{j}^{d}=-\left(q_{j}^{d}\right)^{2} u_{j}^{\prime \prime}\left(q_{j}^{d}\right)=\frac{f_{j}}{L} \lambda_{j} w .
$$

The left-hand side is increasing in q_{j}^{d} since

$$
\frac{\partial}{\partial q_{j}^{d}}\left(-\left(q_{j}^{d}\right)^{2} u_{j}^{\prime \prime}\left(q_{j}^{d}\right)\right)=-q_{j}^{d} u_{j}^{\prime \prime}\left(q_{j}^{d}\right)\left[2-\left(-\frac{q_{j}^{d} u_{j}^{\prime \prime \prime}\left(q_{j}^{d}\right)}{u_{j}^{\prime \prime}\left(q_{j}^{d}\right)}\right)\right]=-q_{j}^{d} u_{j}^{\prime \prime}\left(q_{j}^{d}\right)\left[2-r_{u_{j}^{\prime}}\left(q_{j}^{d}\right)\right]>0,
$$

where we use the second-order condition $r_{u_{j}^{\prime}}\left(q_{j}(m)\right)<2$. Thus, we know that q_{j}^{d} is increasing in the market aggregate $\lambda_{j} w$.

Furthermore, using the first-order condition (2) and the profit-maximizing price (5) for the marginal variety, we have

$$
\begin{equation*}
\left[1-r_{u_{j}}\left(q_{j}^{d}\right)\right] u_{j}^{\prime}\left(q_{j}^{d}\right)=\left(\lambda_{j} w\right) m_{j}^{d} . \tag{A-1}
\end{equation*}
$$

The left-hand side is decreasing in q_{j}^{d} since

$$
\frac{\partial}{\partial q_{j}^{d}}\left\{\left[1-r_{u_{j}}\left(q_{j}^{d}\right)\right] u_{j}^{\prime}\left(q_{j}^{d}\right)\right\}=u_{j}^{\prime \prime}\left(q_{j}^{d}\right)\left[2-r_{u_{j}^{\prime}}\left(q_{j}^{d}\right)\right]<0
$$

Hence, since we have shown above that $\partial q_{j}^{d} / \partial\left(\lambda_{j} w\right)>0$, the left-hand side in (A-1) decreases as $\lambda_{j} w$ on the right-hand side of (A-1) increases. It then follows that m_{j}^{d} is decreasing in $\lambda_{j} w$.

Similarly, using the first-order conditions (2) and the profit-maximizing prices (5) for other varieties, we have

$$
\left[1-r_{u_{j}}\left(q_{j}(m)\right)\right] u_{j}^{\prime}\left(q_{j}(m)\right)=\left(\lambda_{j} w\right) m
$$

Since the left-hand side is decreasing in $q_{j}(m)$, we know that $q_{j}(m)$ is decreasing in $\lambda_{j} w$.
Next, we rewrite the zep condition (7) as

$$
\begin{equation*}
L \int_{0}^{m_{j}^{d}}\left\{\left[\frac{1}{1-r_{u_{j}}\left(q_{j}(m)\right)}-1\right] m q_{j}(m)-\frac{f_{j}}{L}\right\} \mathrm{d} G_{j}(m)=F_{j} \tag{A-2}
\end{equation*}
$$

Given that m_{j}^{d} and $q_{j}(m)$ are decreasing in $\lambda_{j} w$, we differentiate the left-hand side of this expression with respect to $\lambda_{j} w$ as follows:

$$
\begin{aligned}
& L\left\{\left[\frac{1}{1-r_{u_{j}}\left(q_{j}^{d}\right)}-1\right] m_{j}^{d} q_{j}\left(m_{j}^{d}\right)-\frac{f_{j}}{L}\right\} g_{j}\left(m_{j}^{d}\right) \frac{\partial m_{j}^{d}}{\partial\left(\lambda_{j} w\right)} \\
& \quad+L \int_{0}^{m_{j}^{d}}\left\{\frac{r_{u_{j}}^{\prime}\left(q_{j}(m)\right)}{\left[1-r_{u_{j}}\left(q_{j}(m)\right)\right]^{2}} q_{j}(m)+\frac{r_{u_{j}}\left(q_{j}(m)\right)}{1-r_{u_{j}}\left(q_{j}(m)\right)}\right\} m \frac{\partial q_{j}(m)}{\partial\left(\lambda_{j} w\right)} \mathrm{d} G_{j}(m)
\end{aligned}
$$

The first-term is zero by the zCP condition (6). Noting that

$$
\begin{aligned}
r_{u_{j}}\left(q_{j}(m)\right) & =-\frac{q_{j}(m) u_{j}^{\prime \prime}\left(q_{j}(m)\right)}{u_{j}^{\prime}\left(q_{j}(m)\right)} \\
r_{u_{j}}^{\prime}\left(q_{j}(m)\right) & =-\frac{\left[u_{j}^{\prime \prime}\left(q_{j}(m)\right)+u_{j}^{\prime \prime \prime}\left(q_{j}(m)\right) q_{j}(m)\right] u_{j}^{\prime}\left(q_{j}(m)\right)-q_{j}(m)\left[u_{j}^{\prime \prime}\left(q_{j}(m)\right)\right]^{2}}{\left[u_{j}^{\prime}\left(q_{j}(m)\right)\right]^{2}}
\end{aligned}
$$

the second term can be expressed as:

$$
L \int_{0}^{m_{j}^{d}}\left\{\frac{\left[2-r_{u_{j}^{\prime}}\left(q_{j}(m)\right)\right] r_{u_{j}}\left(q_{j}(m)\right)}{\left[1-r_{u_{j}}\left(q_{j}(m)\right)\right]^{2}}\right\} m \frac{\partial q_{j}(m)}{\partial\left(\lambda_{j} w\right)} \mathrm{d} G_{j}(m)<0,
$$

where we use the second-order condition $r_{u_{j}^{\prime}}\left(q_{j}(m)\right)<2$. Hence, the left-hand side of the ZEP condition (A-2) is decreasing in $\lambda_{j} w$.

Assume that fixed costs, f_{j}, and sunk costs, F_{j}, are not too large. The former ensures that profits are non-negative (see the ZCP condition in (6)). The latter ensures existence. The left-hand side of the zEP condition is strictly decreasing in $\lambda_{j} w$, whereas the right-hand side is constant. Hence, if fixed costs, f_{j}, and sunk costs, F_{j}, are not too large, then there exists a unique solution for $\lambda_{j} w$. Using the unique $\lambda_{j} w$ thus obtained, we can establish the existence and uniqueness of m_{j}^{d} and $q_{j}(m)$ since both are decreasing in $\lambda_{j} w$.
A.2. Proof of Proposition 2. The first-order conditions (2) and (3), when combined with equation (10), imply that

$$
\begin{equation*}
\frac{\left[N_{j}^{E} \int_{0}^{m_{j}^{d}} u_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)\right]^{\xi_{j}}}{\left[N_{\ell}^{E} \int_{0}^{m_{\ell}^{d}} u_{\ell}\left(q_{\ell}(m)\right) \mathrm{d} G_{\ell}(m)\right]^{\xi_{\ell}}}=\frac{p_{j}^{d}}{p_{\ell}^{d}} \frac{\gamma_{\ell}}{\gamma_{j}} \frac{u_{\ell}^{\prime}\left(q_{\ell}^{d}\right)}{u_{j}^{\prime}\left(q_{j}^{d}\right)} \tag{A-3}
\end{equation*}
$$

When f_{j} and F_{j} are not too large, the market aggregate $\lambda_{j} w$ is uniquely determined by the ZEP condition and so are sector-specific cutoffs m_{j}^{d} and the associated prices p_{j}^{d} and quantities q_{j}^{d} and $q_{j}(m)$ (see Appendix A.1). Since the zep condition does not include N_{j}^{E}, those variables are independent of N_{j}^{E}. Thus, the integrals in (A-3) are independent of N_{j}^{E} and N_{ℓ}^{E}. The right-hand side of equation (A-3) is strictly positive and finite. By monotonicity, there clearly exists a unique $N_{j}^{E}\left(N_{\ell}^{E}\right)$. This relationship satisfies $\left(N_{j}^{E}\right)^{\prime}>0, N_{j}^{E}(0)=0$ and $\lim _{N_{\ell}^{E} \rightarrow \infty} N_{j}^{E}\left(N_{\ell}^{E}\right)=\infty$.

In each sector j, labor supply L_{j} equals labor demand $N_{j}^{E}\left\{\int_{0}^{m_{j}^{d}}\left[L m q_{j}(m)+f_{j}\right] \mathrm{d} G_{j}(m)+\right.$ $\left.F_{j}\right\}$, so that

$$
\begin{equation*}
\frac{L_{j}}{N_{j}^{E}}-L \int_{0}^{m_{j}^{d}} m q_{j}(m) \mathrm{d} G_{j}(m)=f_{j} G_{j}\left(m_{j}^{d}\right)+F_{j} \tag{A-4}
\end{equation*}
$$

Plugging expression (A-4) into (7) yields

$$
\begin{equation*}
N_{j}^{E} \int_{0}^{m_{j}^{d}} \frac{m q_{j}(m)}{1-r_{u_{j}}\left(q_{j}(m)\right)} \mathrm{d} G_{j}(m)=\frac{L_{j}}{L} \tag{A-5}
\end{equation*}
$$

Summing over j and using the overall labor market clearing condition $L=\sum_{j=1}^{J} L_{j}$, we then have the following equilibrium condition:

$$
\begin{equation*}
\sum_{j=1}^{J} N_{j}^{E}\left(N_{\ell}^{E}\right) \int_{0}^{m_{j}^{d}} \frac{m q_{j}(m)}{1-r_{u_{j}}\left(q_{j}(m)\right)} \mathrm{d} G_{j}(m)=1 \tag{A-6}
\end{equation*}
$$

Observe that all integral terms on the left-hand side of (A-6) are positive and independent of the masses of entrants, whereas the right-hand side equals one. Since the limit of the lefthand side is zero when N_{ℓ}^{E} goes to zero, and infinity when N_{ℓ}^{E} goes to infinity, the existence and uniqueness of a solution for N_{ℓ}^{E} follows directly by the properties of $N_{j}^{E}(\cdot)$. Since the terms in braces of the right-hand side of (9) are uniquely determined by Proposition 1, the existence and uniqueness of N_{j}^{E} implies those of $e_{j} L$ and thus those of L_{j} in (8), which proves Proposition 2.
A.3. Proof of Proposition 3. Plugging the first-order condition for the marginal variety $m_{j}^{d}=u_{j}^{\prime}\left(q_{j}^{d}\right) / \delta_{j}$ into (17), we have

$$
\begin{equation*}
u_{j}\left(q_{j}^{d}\right)-u_{j}^{\prime}\left(q_{j}^{d}\right) q_{j}^{d}=\frac{f_{j}}{L} \delta_{j} . \tag{A-7}
\end{equation*}
$$

The left-hand side is increasing in q_{j}^{d} (since $u_{j}^{\prime \prime}<0$), which establishes that q_{j}^{d} is increasing in δ_{j}. Thus, $u^{\prime}\left(q_{j}^{d}\right)$ is decreasing in δ_{j}. Then, from the first-order condition for the marginal variety, we see that when δ_{j} increases, m_{j}^{d} must decrease because $u_{j}^{\prime}\left(q_{j}^{d}\right) / \delta_{j}$ decreases. Hence, m_{j}^{d} is a decreasing function of δ_{j}. From the first-order conditions for the other varieties, $u^{\prime}\left(q_{j}(m)\right)=\delta_{j} m$, we know that $q_{j}(m)$ is decreasing in δ_{j}.

Next, we rewrite the zesp condition (16) as

$$
L \int_{0}^{m_{j}^{d}}\left[\left(\frac{1}{\mathcal{E}_{u_{j}, q_{j}(m)}}-1\right) m q_{j}(m)-\frac{f_{j}}{L}\right] g_{j}(m) \mathrm{d} m=F_{j} .
$$

Given that m_{j}^{d} and $q_{j}(m)$ are decreasing in δ_{j}, we differentiate the left-hand side of this expression with respect to δ_{j} as follows:

$$
\begin{aligned}
& L\left[\left(\frac{1}{\mathcal{E}_{u_{j}, q_{j}^{d}}}-1\right) m_{j}^{d} q_{j}^{d}-\frac{f_{j}}{L}\right] g_{j}\left(m_{j}^{d}\right) \frac{\partial m_{j}^{d}}{\partial \delta_{j}} \\
& \quad+L \int_{0}^{m_{j}^{d}}\left[-\frac{1}{\mathcal{E}_{u_{j}, q_{j}(m)}} \frac{\partial \mathcal{E}_{u_{j}, q_{j}(m)}}{\partial q_{j}(m)} \frac{q_{j}(m)}{\mathcal{E}_{u_{j}, q_{j}(m)}}+\frac{1-\mathcal{E}_{u_{j}, q_{j}(m)}}{\mathcal{E}_{u_{j}, q_{j}(m)}}\right] m \frac{\partial q_{j}(m)}{\partial \delta_{j}} g_{j}(m) \mathrm{d} m
\end{aligned}
$$

where the first term is zero by (17). Using

$$
\frac{\partial \mathcal{E}_{u_{j}, q_{j}(m)}}{\partial q_{j}(m)} \frac{q_{j}(m)}{\mathcal{E}_{u_{j}, q_{j}(m)}}=1-r_{u_{j}}\left(q_{j}(m)\right)-\mathcal{E}_{u_{j}, q_{j}(m)}
$$

we finally have

$$
L \int_{0}^{m_{j}^{d}} \frac{r_{u_{j}}\left(q_{j}(m)\right)}{\mathcal{E}_{u_{j}, q_{j}(m)}} m \frac{\partial q_{j}(m)}{\partial \delta_{j}} g_{j}(m) \mathrm{d} m<0
$$

where the inequality comes from $\partial q_{j}(m) / \partial \delta_{j}<0$.
Assume that fixed costs, f_{j}, and sunk costs, F_{j}, are not too large. The former ensures that social profits are non-negative (see the zCSP condition (17)), and the latter ensures existence. The left-hand side of the zesp condition is strictly decreasing in δ_{j}, whereas the right-hand side is constant. Hence, if fixed costs, f_{j}, and sunk costs, F_{j}, are not too large, then there exists a unique solution for δ_{j}. Using the unique δ_{j} thus obtained, we can establish the
existence and uniqueness of m_{j}^{d} and $q_{j}(m)$ since both are decreasing in δ_{j}.
A.4. Proof of Proposition 4. The first-order conditions (12) and (15), when combined with equation (10), imply that

$$
\begin{equation*}
\frac{\left[N_{j}^{E} \int_{0}^{m_{j}^{d}} u_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)\right]^{\xi_{j}}}{\left[N_{\ell}^{E} \int_{0}^{m_{\ell}^{d}} u_{\ell}\left(q_{\ell}(m)\right) \mathrm{d} G_{\ell}(m)\right]^{\xi_{\ell}}}=\frac{m_{j}^{d}}{m_{\ell}^{d}} \frac{\gamma_{\ell}}{\gamma_{j}} \frac{u_{\ell}^{\prime}\left(q_{\ell}^{d}\right)}{u_{j}^{\prime}\left(q_{j}^{d}\right)} \tag{A-8}
\end{equation*}
$$

When f_{j} and F_{j} are not too large, δ_{j} is uniquely determined by the zesp condition, and so are the sector-specific cutoffs m_{j}^{d} and the associated quantities q_{j}^{d} and $q_{j}(m)$. Since the zESP condition does not include N_{j}^{E}, those variables are independent of N_{j}^{E}. Thus, the integrals in (A-8) are independent of N_{j}^{E} and N_{ℓ}^{E}. The right-hand side of equation (A-8) is strictly positive and finite. By monotonicity, there clearly exists a unique $N_{j}^{E}\left(N_{\ell}^{E}\right)$. This relationship satisfies $\left(N_{j}^{E}\right)^{\prime}>0, N_{j}^{E}(0)=0$ and $\lim _{N_{\ell}^{E} \rightarrow \infty} N_{j}^{E}\left(N_{\ell}^{E}\right)=\infty$.

Plugging expression (A-4) for the optimal allocation into (16) yields

$$
\begin{equation*}
N_{j}^{E} \int_{0}^{m_{j}^{d}} \frac{m q_{j}(m)}{\mathcal{E}_{u_{j}, q_{j}}(m)} \mathrm{d} G_{j}(m)=\frac{L_{j}}{L} . \tag{A-9}
\end{equation*}
$$

Substituting $N_{j}^{E}\left(N_{\ell}^{E}\right)$ obtained from (A-8) into (A-9), making use of $L_{j}=e_{j} L$ and summing over j, we then have the following equilibrium condition:

$$
\begin{equation*}
\sum_{j=1}^{J} N_{j}^{E}\left(N_{\ell}^{E}\right) \int_{0}^{m_{j}^{d}} \frac{m q_{j}(m)}{\mathcal{E}_{u_{j}, q_{j}(m)}} \mathrm{d} G_{j}(m)=1 \tag{A-10}
\end{equation*}
$$

Observe that all integral terms on the left-hand side of (A-10) are positive and independent of the masses of entrants, whereas the right-hand side equals one. Since the limit of the lefthand side is zero when N_{ℓ}^{E} goes to zero, and infinity when N_{ℓ}^{E} goes to infinity, the existence and uniqueness of a solution for N_{ℓ}^{E} follows directly by the properties of $N_{j}^{E}(\cdot)$. Since the terms in braces of the right-hand side of (19) are uniquely determined by Proposition 3 , the existence and uniqueness of N_{j}^{E} implies those of $e_{j} L$ and thus those of L_{j} in (18), which proves Proposition 4.
A.5. Proof of Proposition 5. The former claim can readily be obtained from (8) and (18). The latter claim can be shown as follows. Without loss of generality, we order sectors by
non-decreasing private-to-social expenditure ratios:

$$
\frac{e_{1}^{\mathrm{eqm}}}{e_{1}^{\mathrm{opt}}} \leq \frac{e_{2}^{\mathrm{eqm}}}{e_{2}^{\mathrm{opt}}} \leq \ldots \leq \frac{e_{J}^{\mathrm{eqm}}}{e_{J}^{\mathrm{opt}}}
$$

Then, by definition of the expenditure shares, we must have

$$
\frac{e_{1}^{\mathrm{eqm}}}{e_{1}^{\mathrm{opt}}} \leq \frac{e_{j}^{\mathrm{eqm}}}{e_{j}^{\mathrm{opt}}}, \quad \forall j \Rightarrow e_{1}^{\mathrm{eqm}}=e_{1}^{\mathrm{eqm}} \sum_{j=1}^{J} e_{j}^{\mathrm{opt}} \leq e_{1}^{\mathrm{opt}} \sum_{j=1}^{J} e_{j}^{\mathrm{eqm}}=e_{1}^{\mathrm{opt}}
$$

which implies $e_{1}^{\text {eqm }} / e_{1}^{\mathrm{opt}} \leq 1$. Conversely,

$$
\frac{e_{j}^{\mathrm{eqm}}}{e_{j}^{\mathrm{opt}}} \leq \frac{e_{J}^{\mathrm{eqm}}}{e_{J}^{\mathrm{opt}}}, \quad \forall j \quad \Rightarrow \quad e_{J}^{\mathrm{opt}}=e_{J}^{\mathrm{opt}} \sum_{j=1}^{J} e_{j}^{\mathrm{eqm}} \leq e_{J}^{\mathrm{eqm}} \sum_{j=1}^{J} e_{j}^{\mathrm{opt}}=e_{J}^{\mathrm{eqm}}
$$

which implies $1 \leq e_{J}^{\text {eqm }} / e_{J}^{\mathrm{opt}}$. Since $e_{j}^{\text {eqm }} / e_{j}^{\mathrm{opt}}$ is non-decreasing in j, we have $e_{1}^{\mathrm{eqm}} / e_{1}^{\mathrm{opt}}<$ $e_{J}^{\text {eqm }} / e_{J}^{\text {opt }}$ if there are at least two different $e_{j}^{\text {eqm }} / e_{j}^{\text {opt, }}$ s. In that case, there exists a threshold $j^{*} \in\{1,2, \ldots, J-1\}$ such that all sectors with $j \leq j^{*}$ attract too little expenditure, whereas all sectors with $j>j^{*}$ attract too much expenditure. Using (8) and (18) then yields the result in terms of the intersectoral labor allocation.

To see that the intersectoral allocation is optimal if and only if all expenditure ratios are constant, we proceed as follows. First, assume that $e_{j}^{\text {eqm }} / e_{j}^{\text {opt }}=c$ for all j, where c is a constant. Then, $\sum_{j=1}^{J} e_{j}^{\mathrm{eqm}}=c \sum_{j=1}^{J} e_{j}^{\mathrm{opt}}=1$ must hold, which yields $c=1$ and $e_{j}^{\mathrm{eqm}}=e_{j}^{\mathrm{opt}}$ for all j. Since $L_{j}^{\text {eqm }}=e_{j}^{\text {eqm }} L$ and $L_{j}^{\mathrm{opt}}=e_{j}^{\mathrm{opt}} L$, this proves the if part. To see the only if part, assume that $L_{j}^{\text {eqm }}=L_{j}^{\text {opt }}$ for all j. Clearly, this is only possible if $e_{j}^{\text {eqm }} / e_{j}^{\text {opt }}=1$ for all j. This completes the proof of Proposition 5.
A.6. Proof of Proposition 6. Taking the ratio of $\left(m_{j}^{d}\right)^{\mathrm{opt}}$ and $\left(m_{j}^{d}\right)^{\text {eqm }}$ from (27) yields

$$
\begin{equation*}
\left[\frac{\left(m_{j}^{d}\right)^{\mathrm{opt}}}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right]^{k_{j}+1}=\kappa_{j}\left(k_{j}+1\right)^{2} \tag{A-11}
\end{equation*}
$$

Since $\kappa_{j}\left(k_{j}+1\right)^{2}<1$ (see the discussion below (E-15) in Appendix E.1), this immediately implies that $\left(m_{j}^{d}\right)^{\mathrm{opt}} /\left(m_{j}^{d}\right)^{\text {eqm }}<1$.

Next, taking the difference between the optimal quantity (E-22) and the equilibrium quantity (E-2), evaluated at the equilibrium price (E-3), we have the following two cases.

First, when $0 \leq m \leq\left(m_{j}^{d}\right)^{\text {opt }}$, we obtain

$$
\begin{equation*}
q_{j}^{\mathrm{opt}}(m)-q_{j}^{\mathrm{eqm}}(m)=\frac{1}{\alpha_{j}} \ln \left[\frac{\left(m_{j}^{d}\right)^{\mathrm{opt}}}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right]-\frac{1}{\alpha_{j}} \ln W\left(\mathrm{e} \frac{m}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right) \tag{A-12}
\end{equation*}
$$

Recalling that $W(0)=0$ by the property of the Lambert W function, we know that $\lim _{m \rightarrow+0}\left[q_{j}^{\text {opt }}(m)-q_{j}^{\text {eqm }}(m)\right]>0$. Second, when $\left(m_{j}^{d}\right)^{\text {opt }}<m<\left(m_{j}^{d}\right)$ eqm , we know that $q_{j}^{\mathrm{opt}}(m)=0$, and that $q_{j}^{\text {eqm }}(m)>0$, so that

$$
\begin{equation*}
q_{j}^{\mathrm{opt}}(m)-q_{j}^{\mathrm{eqm}}(m)=\frac{1}{\alpha_{j}} \ln \left[\frac{m}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right]-\frac{1}{\alpha_{j}} \ln W\left(\mathrm{e} \frac{m}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right)<0 . \tag{A-13}
\end{equation*}
$$

Recalling that $W(\mathrm{e})=1$ by the property of the Lambert W function, we know that $\lim _{m \rightarrow\left(m_{j}^{d}\right)^{\text {eqm }}-0}\left[q_{j}^{\mathrm{opt}}(m)-q_{j}^{\mathrm{eqm}}(m)\right]=0$. Noting that (A-13) is strictly increasing in m^{20} and that $\left(m_{j}^{d}\right)^{\text {opt }}<\left(m_{j}^{d}\right)^{\text {eqm }}$, it is verified that $\lim _{m \rightarrow\left(m_{j}^{d}\right)^{\text {opt }}+0}\left[q_{j}^{\text {opt }}(m)-q_{j}^{\text {eqm }}(m)\right]<0$.

Finally, since $q_{j}^{\mathrm{opt}}(m)-q_{j}^{\mathrm{eqm}}(m)$ is continuous at $\left(m_{j}^{d}\right)^{\text {opt }}$ by expressions (A-12) and (A13), $\lim _{m \rightarrow\left(m_{j}^{d}\right)^{\text {opt }}-0}\left[q_{j}^{\mathrm{opt}}(m)-q_{j}^{\text {eqm }}(m)\right]<0$ must hold in (A-12). Noting that expression (A-12) is strictly decreasing in m, and that $\lim _{m \rightarrow+0}\left[q_{j}^{\text {opt }}(m)-q_{j}^{\text {eqm }}(m)\right]>0$, we know that there exists a unique $m_{j}^{*} \in\left(0,\left(m_{j}^{d}\right)^{\text {opt }}\right)$ such that $q_{j}^{\text {opt }}(m)>q_{j}^{\text {eqm }}(m)$ for $m \in\left(0, m_{j}^{*}\right)$ and $q_{j}^{\text {opt }}(m)<q_{j}^{\text {eqm }}(m)$ for $m \in\left(m_{j}^{*},\left(m_{j}^{d}\right)^{\text {opt }}\right]$. This, together with the inequality in (A-13) for $m \in\left(\left(m_{j}^{d}\right)^{\mathrm{opt}},\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right)$ proves our claim.

B. Proofs of the lemmas

B.1. Proof of Lemma 1. By definition, the consumer's expenditure share for sector- j varieties is given by

$$
\begin{equation*}
e_{j} \equiv \frac{N_{j}^{E}}{w} \int_{0}^{m_{j}^{d}} p_{j}(m) q_{j}(m) \mathrm{d} G_{j}(m) \tag{B-1}
\end{equation*}
$$

Combining (5) and (A-5) and using (B-1) yield $L_{j} / L=e_{j}$. Let

$$
\begin{equation*}
R_{j} \equiv N_{j}^{E} \int_{0}^{m_{j}^{d}} u_{j}^{\prime}\left(q_{j}(m)\right) q_{j}(m) \mathrm{d} G_{j}(m)=\lambda_{j} e_{j} w \tag{B-2}
\end{equation*}
$$

be a measure of real revenue in sector j, where we have made use of the first-order conditions (2) and of (B-1). Let further $\mathcal{E}_{U, U_{j}} \equiv\left(\partial U / \partial U_{j}\right)\left(U_{j} / U\right)$ be the elasticity of the upper-tier utility function. The expenditure share can then be expressed as a function of R_{j} and $\mathcal{E}_{U, U_{j}}$.

[^15]To see this, we use (B-2) to get

$$
\frac{e_{j}}{e_{\ell}}=\frac{R_{j} \lambda_{\ell}}{R_{\ell} \lambda_{j}}=\frac{R_{j} \mathcal{E}_{U, U_{j}} \frac{U}{U_{j}}}{R_{\ell} \mathcal{E}_{U, U_{\ell}} \frac{U}{U_{\ell}}} \Rightarrow e_{j} \sum_{\ell=1}^{J} \frac{R_{\ell}}{U_{\ell}} \mathcal{E}_{U, U_{\ell}}=\frac{R_{j}}{U_{j}} \mathcal{E}_{U, U_{j}}
$$

where we use (2) and the property that the expenditure shares sum to one. We thus have

$$
\begin{equation*}
e_{j}=\frac{\frac{R_{j}}{U_{j}} \mathcal{E}_{U, U_{j}}}{\sum_{\ell=1}^{J} \frac{R_{\ell}}{U_{\ell}} \mathcal{E}_{U, U_{\ell}}}, \tag{B-3}
\end{equation*}
$$

as stated in (8). Finally, turning to the mass of entrants, from (A-4) and (8) we obtain

$$
\begin{equation*}
N_{j}^{E}=\frac{e_{j} L}{f_{j} G_{j}\left(m_{j}^{d}\right)+F_{j}+L \int_{0}^{m_{j}^{d}} m q_{j}(m) \mathrm{d} G_{j}(m)} \tag{B-4}
\end{equation*}
$$

Since $m q_{j}(m)=q_{j}(m) p_{j}(m)\left[1-r_{u_{j}}\left(q_{j}(m)\right)\right] / w=q_{j}(m)\left[1-r_{u_{j}}\left(q_{j}(m)\right)\right] u_{j}^{\prime}\left(q_{j}(m)\right) /\left(\lambda_{j} w\right)$ from profit maximization and the consumer's first-order conditions, and using $\lambda_{j} w=R_{j} / e_{j}$ from (B-2), we have $m q_{j}(m)=e_{j} q_{j}(m)\left[1-r_{u_{j}}\left(q_{j}(m)\right)\right] u_{j}^{\prime}\left(q_{j}(m)\right) / R_{j}$. Plugging this into equation (B-4), and noticing that R_{j} depends on N_{j}^{E}, we can solve the resulting equation for N_{j}^{E}, which yields (9). This completes the proof of Lemma 1 .
B.2. Proof of Lemma 2. The proof is similar to that for Lemma 1. Using the shadow price $m / \mathcal{E}_{u_{j}, q_{j}(m)}$, the social expenditure share for sector- j varieties is defined as

$$
\begin{equation*}
e_{j} \equiv N_{j}^{E} \int_{0}^{m_{j}^{d}} \frac{m q_{j}(m)}{\mathcal{E}_{u_{j}, q_{j}(m)}} \mathrm{d} G_{j}(m) \tag{B-5}
\end{equation*}
$$

Combining (B-5) and (A-9) yield $L_{j}=e_{j} L$. The social expenditure share e_{j} can be expressed in terms of the elasticities of the upper-tier utility function. To see this, we use the definition of $\mathcal{E}_{u_{j}, q_{j}(m)}$ and the first-order condition (12) to obtain

$$
\begin{equation*}
e_{j}=N_{j}^{E} \int_{0}^{m_{j}^{d}} \frac{m u_{j}\left(q_{j}(m)\right)}{u_{j}^{\prime}\left(q_{j}(m)\right)} \mathrm{d} G_{j}(m)=\frac{U_{j}}{\delta_{j}} \tag{B-6}
\end{equation*}
$$

Taking the ratio of sectors j and ℓ yields

$$
\frac{e_{j}}{e_{\ell}}=\frac{U_{j} \delta_{\ell}}{U_{\ell} \delta_{j}}=\frac{\mathcal{E}_{U, U_{j}}}{\mathcal{E}_{U, U_{\ell}}} \quad \Rightarrow \quad e_{j} \sum_{\ell=1}^{J} \mathcal{E}_{U, U_{\ell}}=\mathcal{E}_{U, U_{j}}
$$

where we have made use of condition (12) and of the property that the expenditure shares sum to one. We thus obtain

$$
e_{j}=\frac{\mathcal{E}_{U, U_{j}}}{\sum_{\ell=1}^{J} \mathcal{E}_{U, U_{\ell}}}
$$

as in equation (18). Finally, turning to the mass of entrants, from (A-4) and (18) we obtain (B-4). We know that $m q_{j}(m)=q_{j}(m) u_{j}^{\prime}\left(q_{j}(m)\right) / \delta_{j}=e_{j} q_{j}(m) u_{j}^{\prime}\left(q_{j}(m)\right) / U_{j}=e_{j} \mathcal{E}_{u_{j}, q_{j}(m)}$ $u_{j}\left(q_{j}(m)\right) / U_{j}$ holds for the optimal allocation. Plugging this into (B-4), and noting that U_{j} depends on N_{j}^{E}, we can solve the resulting equation for N_{j}^{E}, which yields (19). This completes the proof of Lemma 2.
B.3. Proof of Lemma 3. We derive the ratio R_{j} / U_{j} for the cara case with Pareto productivity distributions. By definition of the cara subutility,

$$
\begin{equation*}
R_{j}=N_{j}^{E} \int_{0}^{m_{j}^{d}} q_{j}(m) \alpha_{j} \mathrm{e}^{-\alpha_{j} q_{j}(m)} \mathrm{d} G_{j}(m) \text { and } U_{j}=N_{j}^{E} \int_{0}^{m_{j}^{d}}\left[1-\mathrm{e}^{-\alpha_{j} q_{j}(m)}\right] \mathrm{d} G_{j}(m) \tag{B-7}
\end{equation*}
$$

As shown in the supplementary Appendix E , the equilibrium quantities are given by $q_{j}(m)=$ $\left(1 / \alpha_{j}\right)\left[1-W\left(\mathrm{e} m / m_{j}^{d}\right)\right]$, where W is the Lambert W function defined as $\varphi=W(\varphi) \mathrm{e}^{W(\varphi)}$. To integrate the foregoing expressions, we use the change in variables suggested by Corless et al. (1996, p.341). Let

$$
z \equiv W\left(\mathrm{e} \frac{m}{m_{j}^{d}}\right), \quad \text { so that } \mathrm{e} \frac{m}{m_{j}^{d}}=z \mathrm{e}^{z} .
$$

This change in variables then yields $\mathrm{d} m=(1+z) \mathrm{e}^{z-1} m_{j}^{d} \mathrm{~d} z$, with the new integration bounds given by 0 and 1 . Substituting the expressions for quantities into R_{j} in (B-7), using the definition of W, and making the above change in variables, we have:

$$
\begin{aligned}
R_{j} & =N_{j}^{E} \int_{0}^{m_{j}^{d}}\left[1-W\left(\mathrm{e} m / m_{j}^{d}\right)\right] \mathrm{e}^{W\left(\mathrm{e} m / m_{j}^{d}\right)-1} g_{j}(m) \mathrm{d} m \\
& =N_{j}^{E} m_{j}^{d} \int_{0}^{1}(1-z) \mathrm{e}^{z-1}(1+z) \mathrm{e}^{z-1} g_{j}\left(z \mathrm{e}^{z-1} m_{j}^{d}\right) \mathrm{d} z
\end{aligned}
$$

Applying the same technique to the lower-tier utility U_{j} in (B-7) we obtain

$$
\begin{aligned}
U_{j} & =N_{j}^{E} \int_{0}^{m_{j}^{d}}\left[1-\mathrm{e}^{W\left(\mathrm{e} m / m_{j}^{d}\right)-1}\right] g_{j}(m) \mathrm{d} m \\
& =N_{j}^{E} m_{j}^{d} \int_{0}^{1}\left(1-\mathrm{e}^{z-1}\right)(1+z) \mathrm{e}^{z-1} g_{j}\left(z \mathrm{e}^{z-1} m_{j}^{d}\right) \mathrm{d} z
\end{aligned}
$$

Taking the ratio R_{j} / U_{j} then yields:

$$
\begin{equation*}
\frac{R_{j}}{U_{j}}=\frac{\int_{0}^{1}(1-z) \mathrm{e}^{z-1}(1+z) \mathrm{e}^{z-1} g_{j}\left(z \mathrm{e}^{z-1} m_{j}^{d}\right) \mathrm{d} z}{\int_{0}^{1}\left(1-\mathrm{e}^{z-1}\right)(1+z) \mathrm{e}^{z-1} g_{j}\left(z \mathrm{e}^{z-1} m_{j}^{d}\right) \mathrm{d} z} \tag{B-8}
\end{equation*}
$$

where $(1-z) \mathrm{e}^{z-1}<1-\mathrm{e}^{z-1}$ for all $z \in[0,1)$. With a Pareto distribution, we have $g_{j}\left(z \mathrm{e}^{z-1} m_{j}^{d}\right)=k_{j}\left(z \mathrm{e}^{z-1} m_{j}^{d}\right)^{k_{j}-1}\left(m_{j}^{\max }\right)^{-k_{j}}$, so that expression (B-8) can be written as (29).

C. Additional details for the quantification procedure

This appendix provides details on the data that we use and derives additional expressions required for the quantification procedure.
C.1. Data. Besides the firm-level esane dataset for France and the bSD dataset for the UK, we build on industry-level information from the OECD STAN database for both countries. More specifically, we obtain sectoral expenditure shares and R\&D expenditure data by ISIC Rev. 3 from the French and UK input-output tables. These input-output tables contain information on 35 sectors and dictate the level of aggregation in our analysis. We discard the 'Public Administration and Defense' aggregate (12.12% of expenditure for France and 11.29% for the UK). Expenditure for each sector is computed as the sum of 'Households Final Consumption' (code C39) and 'General Government Final Consumption' (code C41). We use the ratio of $\mathrm{R} \& \mathrm{D}$ expenditure to gross output at basic prices to proxy for sunk entry costs and fixed costs, and trim the data by getting rid of the top and bottom 1.5% of the firm-level employment distribution across all sectors. ${ }^{21}$
C.2. Additional expressions. We derive the expressions needed to back out the structural parameters of the model in our quantification procedure.
cara subutility. In the cara case, firm variable employment used for production in the market equilibrium with Pareto productivity distribution is given by:

$$
\operatorname{varemp}^{\text {CARA }_{j}}(m)=\frac{m}{\alpha_{j}}\left(1-W_{j}\right),
$$

[^16]where $W_{j} \equiv W\left(\mathrm{e} m / m_{j}^{d}\right)$ denotes the Lambert W function. Using $z \equiv W\left(\mathrm{e} m / m_{j}^{d}\right)$, em/m ${ }_{j}^{d}=$ $z \mathrm{e}^{z}$ and $\mathrm{d} m=(1+z) \mathrm{e}^{z-1} m_{j}^{d} \mathrm{~d} z$, the conditional mean of $\ln \left[\operatorname{varemp} \mathrm{p}_{j}^{\text {CARA }}(m)\right]$ is given by:
$$
\operatorname{mean}_{j}^{\text {CARA }}=\frac{1}{G\left(m_{j}^{d}\right)} \int_{0}^{m_{j}^{d}} \ln \left[\frac{m}{\alpha_{j}}\left(1-W_{j}\right)\right] \mathrm{d} G(m)=M_{j}+\ln m_{j}^{d}-\ln \alpha_{j}
$$
where $M_{j} \equiv-1 / k_{j}+k_{j} \int_{0}^{1}\left(z \mathrm{e}^{z-1}\right)^{k_{j}-1}(1+z) \mathrm{e}^{z-1} \ln (1-z) \mathrm{d} z$ is a function of k_{j} only. In turn, the conditonal variance of $\ln \left[\operatorname{varemp}_{j}^{\text {CARA }}(m)\right]$ becomes:
\[

$$
\begin{aligned}
\left(\operatorname{sd}_{j}^{\mathrm{CARA}}\right)^{2} & =\frac{1}{G\left(m_{j}^{d}\right)} \int_{0}^{m_{j}^{d}}\left\{\ln \left[\frac{m}{\alpha_{j}}\left(1-W_{j}\right)\right]-\mu_{j}^{\mathrm{CARA}}\right\}^{2} \mathrm{~d} G(m) \\
& =\frac{2}{k_{j}^{2}}-M_{j}^{2}+k_{j} \int_{0}^{1} \ln \left[\left(z \mathrm{e}^{z-1}\right)^{2}(1-z)\right]\left(z \mathrm{e}^{z-1}\right)^{k_{j}-1}(1+z) \mathrm{e}^{z-1} \ln (1-z) \mathrm{d} z
\end{aligned}
$$
\]

which yields the following expression:

$$
\begin{equation*}
\operatorname{sd}_{j}^{\mathrm{CARA}}=\sqrt{\frac{2}{k_{j}^{2}}-M_{j}^{2}+k_{j} \int_{0}^{1} \ln \left[\left(z \mathrm{e}^{z-1}\right)^{2}(1-z)\right]\left(z \mathrm{e}^{z-1}\right)^{k_{j}-1}(1+z) \mathrm{e}^{z-1} \ln (1-z) \mathrm{d} z} \tag{C-1}
\end{equation*}
$$

ces subutility. Turning to the ces case, firm variable employment used for production in the market equilibrium with Pareto productivity distribution is given by:

$$
\operatorname{varemp}_{j}^{\mathrm{CES}}(m)=\frac{f_{j} \rho_{j}}{1-\rho_{j}}\left(\frac{m_{j}^{d}}{m}\right)^{\frac{\rho_{j}}{1-\rho_{j}}}
$$

The conditional mean of $\ln \left[\operatorname{varemp}_{j}^{\text {CES }}(m)\right]$ is given by:

$$
\operatorname{mean}_{j}^{\mathrm{CES}}=\frac{1}{G\left(m_{j}^{d}\right)} \int_{0}^{m_{j}^{d}} \ln \left[\frac{f_{j} \rho_{j}}{1-\rho_{j}}\left(\frac{m_{j}^{d}}{m}\right)^{\frac{\rho_{j}}{1-\rho_{j}}}\right] \mathrm{d} G(m)=\ln \left(\frac{f_{j} \rho_{j}}{1-\rho_{j}}\right)+\frac{\rho_{j}}{k_{j}\left(1-\rho_{j}\right)}
$$

Using the same approach than in the cara case, one can obtain the standard deviation of $\ln \left[\operatorname{varemp}_{j}^{\text {CES }}(m)\right]$, which depends on k_{j} and ρ_{j}, as follows:

$$
\begin{equation*}
\operatorname{sd}_{j}^{\mathrm{CES}}=\frac{\rho_{j}}{k_{j}\left(1-\rho_{j}\right)} . \tag{C-2}
\end{equation*}
$$

D. Allais surplus

This appendix derives the Allais surplus (Allais, 1943, 1977), which is the welfare measure we use when quantifying aggregate welfare distortions. In our context, the Allais surplus is defined as the maximum amount of the numeraire that can be saved when the social planner minimizes the resource cost of providing the agents with the equilibrium utility. We thus consider the following optimization problem:

$$
\begin{align*}
\min _{\left\{N_{j}^{E}, m_{j}^{d}, q_{j}(m)\right\}} & L^{A} \equiv \sum_{j=1}^{J} N_{j}^{E}\left\{\int_{0}^{m_{j}^{d}}\left[L m q_{j}(m)+f_{j}\right] \mathrm{d} G_{j}(m)+F_{j}\right\} \tag{D-1}\\
\text { s.t. } & U\left(\widetilde{U}_{1}\left(U_{1}\right), \widetilde{U}_{2}\left(U_{2}\right), \ldots, \widetilde{U}_{J}\left(U_{J}\right)\right) \geq \bar{U}
\end{align*}
$$

where \bar{U} is a fixed target utility level that needs to be provided to each agent. The solution to this problem yields the minimum resource cost, $L^{A}(\bar{U})$, required to achieve the target utility level. Setting $\bar{U}=U^{\text {eqm }}$, the Allais surplus is formally defined as:

$$
\begin{equation*}
A \equiv L-L^{A}\left(U^{\mathrm{eqm}}\right) \tag{D-2}
\end{equation*}
$$

where the first term L is the amount of labor needed for the market economy to attain the equilibrium utility since the labor market clears in equilibrium. If there are distortions, the planner requires, by definition, less labor to attain the equilibrium utility than the market economy does. Thus, the minimum resource cost must satisfy $L^{A}\left(U^{\mathrm{eqm}}\right) \leq L$, so that $A \geq 0$.

Let μ denote the Lagrange multiplier associated with the utility constraint. From (D-1), the first-order conditions with respect to $q_{j}(m), m_{j}^{d}$, and N_{j}^{E} are given by

$$
\begin{align*}
u_{j}^{\prime}\left(q_{j}(m)\right) & =\frac{L}{\mu_{j}} m, \quad \mu_{j} \equiv \mu \frac{\partial U}{\partial \widetilde{U}_{j}} \frac{\partial \widetilde{U}_{j}}{\partial U_{j}} \tag{D-3}\\
\mu_{j} u_{j}\left(q_{j}^{d}\right) & =L m_{j}^{d} q_{j}^{d}+f_{j} \tag{D-4}\\
\mu_{j} \int_{0}^{m_{j}^{d}} u_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m) & =\int_{0}^{m_{j}^{d}}\left[L m q_{j}(m)+f_{j}\right] \mathrm{d} G_{j}(m)+F_{j} \tag{D-5}
\end{align*}
$$

as well as the constraint $\bar{U}=U\left(\widetilde{U}_{1}\left(U_{1}\right), \widetilde{U}_{2}\left(U_{2}\right), \ldots, \widetilde{U}_{J}\left(U_{J}\right)\right) \geq \bar{U}$. Comparing (D-3)-(D-5) with (12)-(14) reveals that the first-order conditions are isomorphic. Thus, we can conclude that the optimal cutoffs and quantities are the same in the Allais surplus problem and the 'primal' optimal problem in Section 2.2. In what follows, we focus on the optimal labor allocation and entry.
D.1. CARA subutility. Assume that the subutility function is of the CARA form $u_{j}\left(q_{j}(m)\right)=$ $1-\mathrm{e}^{-\alpha_{j} q_{j}(m)}$, that the upper-tier utility function U is of the ces form as in (E-1), that $\widetilde{U}_{j}\left(U_{j}\right)=U_{j}$, and that G_{j} follows a Pareto distribution. We also assume that $f_{j}=0$ in the cara subutility case.

To derive the optimal masses of entrants, we use the multipliers $\mu_{j} \equiv \mu \mathcal{E}_{U, U_{j}} \frac{U}{U_{j}}$. Given the ces upper-tier utility, the ratio of multipliers in sectors j and ℓ is

$$
\begin{equation*}
\frac{\mu_{j}}{\mu_{\ell}}=\frac{\beta_{j}}{\beta_{\ell}}\left(\frac{U_{\ell}}{U_{j}}\right)^{\frac{1}{\sigma}}=\frac{\alpha_{\ell}}{\alpha_{j}} \frac{m_{j}^{d}}{m_{\ell}^{d}} \tag{D-6}
\end{equation*}
$$

where we have used (D-3) evaluated at $m=m_{j}^{d}$ to get the last equality. It follows from (D-6) that

$$
U_{\ell}=\left(\frac{\alpha_{\ell} \beta_{\ell}}{\alpha_{j} \beta_{j}} \frac{m_{j}^{d}}{m_{\ell}^{d}}\right)^{\sigma} U_{j}
$$

which, together with the utility constraint $\bar{U}=\left[\sum_{\ell=1}^{J} \beta_{\ell} U_{\ell}^{(\sigma-1) / \sigma}\right]^{\sigma /(\sigma-1)}$, yields

$$
\begin{equation*}
\bar{U}=U_{j} \cdot\left[\beta_{j}^{1-\sigma}\left(\frac{m_{j}^{d}}{\alpha_{j}}\right)^{\sigma-1} \sum_{\ell=1}^{J} \beta_{\ell}^{\sigma}\left(\frac{m_{\ell}^{d}}{\alpha_{\ell}}\right)^{1-\sigma}\right]^{\frac{\sigma}{\sigma-1}} \tag{D-7}
\end{equation*}
$$

Since the optimal quantities and cutoffs are the same in the 'primal' and 'dual' problems, we can plug (E-23) into (D-7) to eliminate U_{j}. We can then use $G_{j}\left(m_{j}^{d}\right)=\alpha_{j} F_{j}\left(k_{j}+1\right)^{2} /\left(L m_{j}^{d}\right)$ from the expression of the optimal cutoff (E-28) to solve for N_{j}^{E} as follows

$$
\begin{equation*}
N_{j}^{E}=\frac{\alpha_{j}^{\sigma-1} \beta_{j}^{\sigma}\left[\left(m_{j}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}}{\left[\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma}\left[\left(m_{\ell}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}\right]^{\frac{\sigma}{\sigma-1}}} \frac{L \bar{U}}{F_{j}\left(k_{j}+1\right)}=\left(N_{j}^{E}\right)^{\mathrm{opt}} \frac{\bar{U}}{U^{\mathrm{opt}}} \tag{D-8}
\end{equation*}
$$

where $U^{\mathrm{opt}}=\left\{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma}\left[\left(m_{\ell}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}\right\}^{1 /(\sigma-1)}$ as given by (E-33) and where $\left(N_{j}^{E}\right)^{\mathrm{opt}}$ is given by (E-30). As can be seen from (D-8), the mass of entrants in sector j needed to achieve \bar{U} is proportional to this target utility level.

Summing up, to achieve the target utility \bar{U} in the resource minimization problem, the planner imposes the socially optimal cutoffs $\left(m_{j}^{d}\right)^{\text {opt }}$ and firm-specific quantities $q_{j}^{\text {opt }}(m)=$ $\left(1 / \alpha_{j}\right) \ln \left(m_{j}^{\mathrm{opt}} / m\right)$, and chooses the mass of entrants (D-8) that is proportional to \bar{U}. Thus, to achieve a higher \bar{U} the planner would allow more entrants, but always choose the same level of selection. The associated resource cost $L^{A}(\bar{U})$ can be obtained by plugging this
solution back into the objective function as follows

$$
L^{A}(\bar{U})=\sum_{j=1}^{J}\left(N_{j}^{E}\right)^{\mathrm{opt}} \frac{\bar{U}}{U^{\mathrm{opt}}}\left[\int_{0}^{\left(m_{j}^{d}\right)^{\mathrm{opt}}} L m q_{j}^{\mathrm{opt}}(m) \mathrm{d} G_{j}(m)+F_{j}\right]=\frac{\bar{U}}{U^{\mathrm{opt}}} L
$$

The last equality holds because the optimal allocation in Appendix E, by definition, clears the labor market. Setting $\bar{U}=U^{\text {eqm }}$ yields

$$
\begin{equation*}
\frac{L^{A}\left(U^{\mathrm{eqm}}\right)}{L}=\frac{U^{\mathrm{eqm}}}{U^{\mathrm{opt}}}<1, \quad \text { i.e., } \quad \frac{L-L^{A}\left(U^{\mathrm{eqm}}\right)}{L}=\frac{U^{\mathrm{opt}}-U^{\mathrm{eqm}}}{U^{\mathrm{opt}}} \tag{D-9}
\end{equation*}
$$

where the numerator of the left-hand side is the Allais surplus. This expression provides a measure of the aggregate welfare distortion in the economy. Note that we may use the welfare measure based on utility and the measure based on the Allais surplus interchangeably.
D.2. ces subutility. Assume that the subutility function is of the ces form $u_{j}\left(q_{j}(m)\right)=$ $q_{j}(m)^{\rho_{j}}$, that the upper-tier utility function U is of the ces form as in (E-1), that $\widetilde{U}_{j}\left(U_{j}\right)=$ $U_{j}^{1 / \rho_{j}}$, and that G_{j} follows a Pareto distribution. We also assume that $f_{j}>0$.

To derive the optimal masses of entrants, we use the multipliers $\mu_{j} \equiv \mu \frac{\partial U}{\partial \widetilde{U}_{j}} \frac{\partial \widetilde{U}_{j}}{\partial U_{j}}$. Given the ces upper-tier utility, the ratio of multipliers in sectors j and ℓ is

$$
\begin{equation*}
\frac{\mu_{j}}{\mu_{\ell}}=\frac{\beta_{j} / \rho_{j}}{\beta_{\ell} / \rho_{\ell}} \frac{U_{\ell} \frac{1-\sigma\left(1-\rho_{\ell}\right)}{\sigma \rho_{\ell}}}{U_{j}^{\frac{1-\sigma\left(1-\rho_{j}\right)}{\sigma \rho_{j}}}}=\frac{\rho_{\ell}\left(q_{j}^{d}\right)^{1-\rho_{j}} m_{j}^{d}}{\rho_{j}\left(q_{\ell}^{d}\right)^{1-\rho_{\ell} m_{\ell}^{d}}} \tag{D-10}
\end{equation*}
$$

where we have used (D-3) evaluated at $m=m_{j}^{d}$ in the second equality. Since the optimal cutoffs and quantities are as in Appendix E, using (E-35) allows us to rewrite expression (D-10) as follows:

$$
\begin{equation*}
\frac{U_{j}^{\frac{1-\sigma\left(1-\rho_{j}\right)}{\sigma \rho_{j}}}}{U_{\ell}^{\frac{1-\sigma\left(1-\rho_{\ell}\right)}{\sigma \rho_{\ell}}}}=\left(\frac{\beta_{j}}{\beta_{\ell}}\right)\left[\frac{f_{j} \rho_{j}}{L\left(1-\rho_{j}\right)}\right]^{\rho_{j}-1}\left[\frac{f_{\ell} \rho_{\ell}}{L\left(1-\rho_{\ell}\right)}\right]^{1-\rho_{\ell}} \frac{\left(m_{j}^{d}\right)^{-\rho_{j}}}{\left(m_{\ell}^{d}\right)^{-\rho_{\ell}}} \tag{D-11}
\end{equation*}
$$

Since the right-hand side of (D-11) is the same as that of (E-40), we obtain

$$
\frac{U_{j}^{\frac{1-\sigma\left(1-\rho_{j}\right)}{\sigma \rho_{j}}}}{U_{\ell}^{\frac{1-\sigma\left(1-\rho_{\ell}\right)}{\sigma \rho_{\ell}}}}=\frac{\left(U_{j}^{\mathrm{opt}}\right)^{\frac{1-\sigma\left(1-\rho_{j}\right)}{\sigma \rho_{j}}}}{\left(U_{\ell}^{\mathrm{opt}}\right)^{\frac{1-\sigma\left(1-\rho_{\ell}\right)}{\sigma \rho_{\ell}}}} .
$$

As in Appendix E, we now consider that $\sigma \rightarrow 1$ in order to derive closed-form solutions. We then have $U_{j} / U_{\ell}=U_{j}^{\text {opt }} / U_{\ell}^{\text {opt }}$ and from the definition of \bar{U} we obtain:

$$
\begin{align*}
\bar{U} & =\prod_{\ell=1}^{J} U_{j}^{\frac{\beta_{\ell}}{\rho_{\ell}}}\left(\frac{U_{\ell}}{U_{j}}\right)^{\frac{\beta_{\ell}}{\rho_{\ell}}}=\prod_{\ell=1}^{J} U_{j}^{\frac{\beta_{\ell}}{\rho_{\ell}}}\left(\frac{U_{\ell}^{\mathrm{opt}}}{U_{j}^{\mathrm{opt}}}\right)^{\frac{\beta_{\ell}}{\rho_{\ell}}} \\
& =\prod_{\ell=1}^{J}\left(U_{\ell}^{\mathrm{opt}}\right)^{\frac{\beta_{\ell}}{\rho_{\ell}}} \prod_{\ell=1}^{J}\left(\frac{U_{j}}{U_{j}^{\mathrm{opt}}}\right)^{\frac{\beta_{\ell}}{\rho_{\ell}}}=U^{\mathrm{opt}} \cdot\left(\frac{U_{j}}{U_{j}^{\mathrm{opt}}}\right)^{\sum_{\ell=1}^{J} \frac{\beta_{\ell}}{\rho_{\ell}}} \tag{D-12}
\end{align*}
$$

Using (E-38), and because $m_{j}^{d}=\left(m_{j}^{d}\right)^{\text {opt }}$, we know that $U_{j} / U_{j}^{\mathrm{opt}}=N_{j}^{E} /\left(N_{j}^{E}\right)^{\mathrm{opt}}$. Plugging this expression into (D-12), we obtain

$$
N_{j}^{E}=\left(N_{j}^{E}\right)^{\mathrm{opt}}\left(\frac{\bar{U}}{U^{\mathrm{opt}}}\right)^{\frac{1}{\sum_{\ell=1}^{J} \frac{\beta_{\ell}}{\rho_{\ell}}}}
$$

Thus, we have

$$
\begin{aligned}
L^{A}(\bar{U}) & =\sum_{j=1}^{J}\left(N_{j}^{E}\right)^{\mathrm{opt}}\left(\frac{\bar{U}}{U^{\mathrm{opt}}}\right)^{\frac{1}{\Sigma_{\ell=1}^{J} \frac{\beta_{\ell}}{\rho_{\ell}}}}\left\{\int_{0}^{\left.\left(m_{j}^{d}\right)^{\mathrm{opt}}\left[L m q_{j}^{\mathrm{opt}}(m)+f_{j}\right] \mathrm{d} G_{j}(m)+F_{j}\right\}}\right. \\
& =\left(\frac{\bar{U}}{U^{\mathrm{opt}}}\right)^{\frac{1}{\Sigma_{\ell=1}^{J} \frac{\beta_{\ell}}{\rho_{\ell}}} L},
\end{aligned}
$$

where the last equality holds because the optimal allocation clears the labor market. Hence, evaluating \bar{U} at $U^{\text {eqm }}$, we obtain

$$
\begin{equation*}
\frac{L-L^{A}\left(U^{\mathrm{eqm}}\right)}{L}=1-\left(\frac{U^{\mathrm{eqm}}}{U^{\mathrm{opt}}}\right)^{\frac{1}{\Sigma_{\ell=1}^{J} \frac{\beta_{\ell}}{\rho_{\ell}}}} . \tag{D-13}
\end{equation*}
$$

This expression provides a measure of the aggregate welfare distortion in the economy. Note that we may not use the welfare measure based on utility and the measure based on the Allais surplus interchangeably in this case, as we could in the cara case in Appendix D.1. The reason is the presence of \widetilde{U}_{j}, which is a transformation of the lower-tier utility. Without that transformation, which in the ces case would amount to setting all ρ_{ℓ} 's that appear in the power of ($\mathrm{D}-13$) equal to one, the foregoing result that utility and the Allais surplus can be used interchangeably would still hold.

Supplementary Appendix - for online publication

In this supplementary Appendix, we first provide details on the derivations of the equilibrium and optimal allocations for cara subutility functions. We then provide a brief summary of the expressions for ces subutility functions. These expressions are required for the quantitative analysis. Last, we provide details on how we quantify the case with cara subutility functions and ces upper-tier utility.

E. Analytical expressions

We assume that the upper-tier utility is of the ces form:

$$
\begin{equation*}
U=\left\{\sum_{j=1}^{J} \beta_{j}\left[\widetilde{U}_{j}\left(U_{j}\right)\right]^{(\sigma-1) / \sigma}\right\}^{\sigma /(\sigma-1)}, \tag{E-1}
\end{equation*}
$$

where $\sigma>1$ is the intersectoral elasticity of substitution, and where the β_{j} are strictly positive parameters that sum to one. The lower-tier utility is $U_{j} \equiv N_{j}^{E} \int_{0}^{m_{j}^{d}} u_{j}\left(q_{j}(m)\right) \mathrm{d} G_{j}(m)$. In what follows, we focus on cases in which the ces form in (E-1) satisfies condition (24), so that there exist unique intersectoral equilibrium and optimal allocations. As explained in the main text, this is always the case for CARA subutility functions and $\widetilde{U}_{j}\left(U_{j}\right)=U_{j}$, and it is the case for homothetic lower-tier ces utility functions with $\widetilde{U}_{j}\left(U_{j}\right)=U_{j}^{1 / \rho_{j}}$ when the lowertier elasticity of substitution exceeds the upper-tier elasticity of substitution. Observe that (E-1) includes the Cobb-Douglas form as a limit case. All results based on the Cobb-Douglas specification, as given in the main text, can be retrieved from the following expressions by letting $\sigma \rightarrow 1$.
E.1. cara subutility. We provide detailed derivations of the equilibrium and optimal allocations in the cara case.

Equilibrium allocation. We first derive the equilibrium cutoffs and quantities. ${ }^{22}$ Assume that $\widetilde{U}_{j}\left(U_{j}\right)=U_{j}$, and that $u_{j}\left(q_{j}(m)\right)=1-\mathrm{e}^{-\alpha_{j} q_{j}(m)}$, so that $u_{j}^{\prime}\left(q_{j}(m)\right)=\alpha_{j} \mathrm{e}^{-\alpha_{j} q_{j}(m)}$, $u_{j}^{\prime \prime}\left(q_{j}(m)\right)=-\alpha_{j}^{2} \mathrm{e}^{-\alpha_{j} q_{j}(m)}$, and $r_{u}\left(q_{j}(m)\right)=\alpha_{j} q_{j}(m)$. We assume in what follows that there are no fixed costs for production, i.e., $f_{j}=0$ for all sectors j. We can do so since, as in Melitz and Ottaviano (2008) but contrary to Melitz (2003), the marginal utility of each

[^17]variety is bounded at zero consumption so that demand for a variety drops to zero when its price exceeds some threshold. Since for the least productive firm, which is indifferent between producing and not producing, we have $q_{j}^{d} \equiv q_{j}\left(m_{j}^{d}\right)=0$, the first-order conditions (2) evaluated for any m and at the cutoff m_{j}^{d} imply the following demand functions:
\[

$$
\begin{equation*}
q_{j}(m)=\frac{1}{\alpha_{j}} \ln \left[\frac{p_{j}^{d}}{p_{j}(m)}\right] \quad \text { for } \quad 0 \leq m \leq m_{j}^{d} \tag{E-2}
\end{equation*}
$$

\]

where $p_{j}^{d} \equiv p_{j}\left(m_{j}^{d}\right)$. Making use of the profit maximizing prices (5), $r_{u}\left(q_{j}(m)\right)=\alpha_{j} q_{j}(m)$, and $q_{j}^{d}=0$, we have

$$
q_{j}(m)=\frac{1}{\alpha_{j}} \ln \left[\frac{m_{j}^{d}}{1-r_{u_{j}}\left(q_{j}^{d}\right)} \frac{1-r_{u}\left(q_{j}(m)\right)}{m}\right]=\frac{1}{\alpha_{j}} \ln \left\{\frac{m_{j}^{d}}{m}\left[1-\alpha_{j} q_{j}(m)\right]\right\}
$$

This implicit equation can be solved for $q_{j}(m)=\left(1-W_{j}\right) / \alpha_{j}$, where $W_{j} \equiv W\left(\mathrm{e} m / m_{j}^{d}\right)$ denotes the Lambert W function, defined as $\varphi=W(\varphi) \mathrm{e}^{W(\varphi)}$ (see Corless et al., 1996). We suppress its argument to alleviate notation whenever there is no possible confusion. Since $r_{u_{j}}=1-W_{j}$, we then also have the following profit maximizing prices, quantities, and operating profits:

$$
\begin{equation*}
p_{j}(m)=\frac{m w}{W_{j}}, \quad q_{j}(m)=\frac{1}{\alpha_{j}}\left(1-W_{j}\right), \quad \pi_{j}(m)=\frac{L m w}{\alpha_{j}}\left(W_{j}^{-1}+W_{j}-2\right) \tag{E-3}
\end{equation*}
$$

By definition of the Lambert W function, we have $W(\varphi) \geq 0$ for all $\varphi \geq 0$. Taking logarithms on both sides of $\varphi=W(\varphi) \mathrm{e}^{W(\varphi)}$ and differentiating yields

$$
W^{\prime}(\varphi)=\frac{W(\varphi)}{\varphi[W(\varphi)+1]}>0
$$

for all $\varphi>0$. Finally, we have: $0=W(0) \mathrm{e}^{W(0)}$, which implies $W(0)=0$; and $\mathrm{e}=W(\mathrm{e}) \mathrm{e}^{W(\mathrm{e})}$, which implies $W(\mathrm{e})=1$. Hence, we have $0 \leq W_{j} \leq 1$ if $0 \leq m \leq m_{j}^{d}$. The expressions in (E-3) show that a firm with a draw m_{j}^{d} charges a price equal to marginal cost, faces zero demand, and earns zero operating profits. Furthermore, using the properties of W^{\prime}, we readily obtain $\partial p_{j}(m) / \partial m>0, \partial q_{j}(m) / \partial m<0$, and $\partial \pi_{j}(m) / \partial m<0$. In words, firms with higher productivity $1 / m$ charge lower prices, produce larger quantities, and earn higher operating profits. Our specification with variable demand elasticity also features higher
markups for more productive firms. Indeed, the markup

$$
\begin{equation*}
\Lambda_{j}(m) \equiv \frac{p_{j}(m)}{m w}=\frac{1}{W_{j}} \tag{E-4}
\end{equation*}
$$

is such that $\partial \Lambda_{j}(m) / \partial m<0$.
Using (E-3) and $r_{u_{j}}=1-W_{j}$, and recalling that $f_{j}=0$, the zero expected profit condition (7) can be expressed as

$$
\begin{equation*}
\int_{0}^{m_{j}^{d}} m\left(W_{j}^{-1}+W_{j}-2\right) \mathrm{d} G_{j}(m)=\frac{\alpha_{j} F_{j}}{L} \tag{E-5}
\end{equation*}
$$

To derive closed-form solutions for various expressions with CARA subutility functions, we need to compute integrals involving the Lambert W function. This can be done by using the change in variables suggested by Corless et al. (1996, p.341). Let

$$
z \equiv W\left(\mathrm{e} \frac{m}{m_{j}^{d}}\right), \quad \text { so that } \mathrm{e} \frac{m}{m_{j}^{d}}=z \mathrm{e}^{z} .
$$

The change in variables then yields $\mathrm{d} m=(1+z) \mathrm{e}^{z-1} m_{j}^{d} \mathrm{~d} z$, with the new integration bounds given by 0 and 1 . Using the change in variables, the LHS of (E-5) can be expressed as follows:

$$
\int_{0}^{m_{j}^{d}} m\left(W_{j}^{-1}+W_{j}-2\right) \mathrm{d} G_{j}(m)=\left(m_{j}^{d}\right)^{2} \int_{0}^{1} z(1+z) \mathrm{e}^{2(z-1)}\left(z^{-1}+z-2\right) g_{j}\left(z \mathrm{e}^{z-1} m_{j}^{d}\right) \mathrm{d} z
$$

for an arbitrary distribution $g_{j}(\cdot)$ of draws.
We consider the Pareto distribution $G_{j}(m)=\left(m / m_{j}^{\max }\right)^{k_{j}}$ with upper bound $m_{j}^{\max }>0$ and shape parameter $k_{j} \geq 1$. The associated density g_{j} is 'multiplicatively quasi-separable' in the sense that $g_{j}(x y) \equiv g_{j}(x) \times h_{j}(y)$ for some function h_{j} (see Behrens and Murata, 2007, Theorem 1, p.779). In that case, we have

$$
\int_{0}^{m_{j}^{d}} m\left(W_{j}^{-1}+W_{j}-2\right) \mathrm{d} G_{j}(m)=\left(m_{j}^{d}\right)^{2} h_{j}\left(m_{j}^{d}\right) \int_{0}^{1} z(1+z) \mathrm{e}^{2(z-1)}\left(z^{-1}+z-2\right) g_{j}\left(z \mathrm{e}^{z-1}\right) \mathrm{d} z
$$

where the integral term is independent of the cutoff m_{j}^{d}. This property simplifies substantially the analysis. Indeed, the integral reduces to

$$
\begin{equation*}
\int_{0}^{m_{j}^{d}} m\left(W_{j}^{-1}+W_{j}-2\right) \mathrm{d} G_{j}(m)=\kappa_{j}\left(m_{j}^{\max }\right)^{-k_{j}}\left(m_{j}^{d}\right)^{k_{j}+1} \tag{E-6}
\end{equation*}
$$

where $\kappa_{j} \equiv k_{j} \mathrm{e}^{-\left(k_{j}+1\right)} \int_{0}^{1}(1+z)\left(z^{-1}+z-2\right)\left(z \mathrm{e}^{z}\right)^{k_{j}} \mathrm{e}^{z} \mathrm{~d} z>0$ is a constant term which solely depends on the shape parameter k_{j}. Plugging (E-6) into (E-5), we obtain the equilibrium cutoffs

$$
\begin{equation*}
\left(m_{j}^{d}\right)^{\mathrm{eqm}}=\left[\frac{\alpha_{j} F_{j}\left(m_{j}^{\max }\right)^{k_{j}}}{\kappa_{j} L}\right]^{\frac{1}{k_{j}+\mathrm{I}}} \tag{E-7}
\end{equation*}
$$

and quantities $q_{j}^{\text {eqm }}(m)=\left[1-W_{j}\left(\mathrm{e} m /\left(m_{j}^{d}\right)^{\text {eqm }}\right)\right] / \alpha_{j}$. Note that (E-7) implies that

$$
\begin{equation*}
\left[\frac{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}{m_{j}^{\max }}\right]^{k_{j}}=G_{j}\left(\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right)=\frac{\alpha_{j} F_{j}}{\kappa_{j} L} \frac{1}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}} \tag{E-8}
\end{equation*}
$$

a relationship that we will use in what follows.
We now turn to the equilibrium labor allocation and masses of entrants. Using (E-3), labor market clearing in sector j can be written as

$$
\begin{equation*}
N_{j}^{E}\left[L \int_{0}^{m_{j}^{d}} m q_{j}(m) \mathrm{d} G_{j}(m)+F_{j}\right]=N_{j}^{E}\left[\frac{L}{\alpha_{j}} \int_{0}^{m_{j}^{d}} m\left(1-W_{j}\right) \mathrm{d} G_{j}(m)+F_{j}\right]=L_{j} \tag{E-9}
\end{equation*}
$$

Making use of the same change in variables for integration as before, and imposing the Pareto distribution, we have

$$
\begin{equation*}
\int_{0}^{m_{j}^{d}} m\left(1-W_{j}\right) \mathrm{d} G_{j}(m)=\kappa_{1 j}\left(m_{j}^{\max }\right)^{-k_{j}}\left(m_{j}^{d}\right)^{k_{j}+1} \tag{E-10}
\end{equation*}
$$

where $\kappa_{1 j} \equiv k_{j} \mathrm{e}^{-\left(k_{j}+1\right)} \int_{0}^{1}\left(1-z^{2}\right)\left(z \mathrm{e}^{z}\right)^{k_{j}} \mathrm{e}^{z} \mathrm{~d} z>0$ is a constant term which solely depends on the shape parameter k_{j}. It can be verified that $\kappa_{1 j} / \kappa_{j}=k_{j}$, so that

$$
\begin{equation*}
\kappa_{j}\left(k_{j}+1\right)=\kappa_{1 j}+\kappa_{j} . \tag{E-11}
\end{equation*}
$$

Using (E-7)-(E-11), and $\sum_{j=1}^{J} L_{j}=L$, the labor market clearing condition thus reduces to

$$
\begin{equation*}
\sum_{j=1}^{J} L_{j}=\sum_{j=1}^{J} \frac{\kappa_{1 j}+\kappa_{j}}{\kappa_{j}} N_{j}^{E} F_{j}=\sum_{j=1}^{J}\left(k_{j}+1\right) N_{j}^{E} F_{j}=L \tag{E-12}
\end{equation*}
$$

Computing $\partial U / \partial U_{j}$ from (E-1), inserting the definition of λ_{j} into (3), and recalling that
$q_{j}^{d}=0$ and $p_{j}^{d}=m_{j}^{d} w$ for all j, we obtain

$$
\begin{equation*}
\frac{\alpha_{j}}{\alpha_{\ell}}=\frac{m_{j}^{d}}{m_{\ell}^{d}} \frac{\lambda_{j}}{\lambda_{\ell}} \Rightarrow \frac{U_{j}}{U_{\ell}}=\left(\frac{\alpha_{j}}{\alpha_{\ell}}\right)^{\sigma}\left(\frac{\beta_{j}}{\beta_{\ell}}\right)^{\sigma}\left[\frac{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}{\left(m_{\ell}^{d} \mathrm{eqm}^{\mathrm{eq}}\right.}\right]^{-\sigma} . \tag{E-13}
\end{equation*}
$$

To solve them for the masses of entrants, we first compute the expression for U_{j} in (E-13). Using the demand functions (E-2) and the profit-maximizing prices in (E-3), the lower-tier utility is given by

$$
\begin{equation*}
U_{j}=N_{j}^{E}\left[G_{j}\left(m_{j}^{d}\right)-\frac{1}{m_{j}^{d}} \int_{0}^{m_{j}^{d}} m W_{j}^{-1} \mathrm{~d} G_{j}(m)\right] \tag{E-14}
\end{equation*}
$$

which can be integrated (using again the same change in variables as before) to obtain:

$$
\int_{0}^{m_{j}^{d}} m W_{j}^{-1} \mathrm{~d} G_{j}(m)=\kappa_{2 j}\left(m_{j}^{\max }\right)^{-k_{j}}\left(m_{j}^{d}\right)^{k_{j}+1}
$$

where $\kappa_{2 j} \equiv k_{j} \mathrm{e}^{-\left(k_{j}+1\right)} \int_{0}^{1}\left(z^{-1}+1\right)\left(z \mathrm{e}^{z}\right)^{k_{j}} \mathrm{e}^{z} \mathrm{~d} z>0$ is a constant term which solely depends on the shape parameter k_{j}. One can verify that $1-\kappa_{2 j}=\frac{1}{k_{j}+1}-\left(\kappa_{1 j}+\kappa_{j}\right)$, so that we can rewrite the $\kappa_{2 j}$ term in terms of $\kappa_{1 j}$ and κ_{j} only. Thus, the lower-tier utility (E-14) becomes

$$
\begin{equation*}
U_{j}=\left[\frac{1}{k_{j}+1}-\left(\kappa_{1 j}+\kappa_{j}\right)\right] N_{j}^{E} G_{j}\left(m_{j}^{d}\right) \tag{E-15}
\end{equation*}
$$

Since $U_{j}>0$ by construction of the lower-tier utility, we have $\left(\kappa_{1 j}+\kappa_{j}\right)\left(k_{j}+1\right)<1$, which is equivalent to $\kappa_{j}\left(k_{j}+1\right)^{2}<1$ by ($\mathrm{E}-11$).

We next insert (E-15) into (E-13) to obtain

$$
\begin{equation*}
\frac{N_{j}^{E}}{N_{\ell}^{E}}=\left(\frac{\alpha_{j}}{\alpha_{\ell}}\right)^{\sigma}\left(\frac{\beta_{j}}{\beta_{\ell}}\right)^{\sigma}\left[\frac{\frac{1}{k_{\ell}+1}-\left(\kappa_{1 \ell}+\kappa_{\ell}\right)}{\frac{1}{k_{j}+1}-\left(\kappa_{1 j}+\kappa_{j}\right)}\right]\left[\frac{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}{\left(m_{\ell}^{d}\right)^{\mathrm{eqm}}}\right]^{-\sigma}\left[\frac{G_{\ell}\left(\left(m_{\ell}^{d}\right)^{\mathrm{eqm}}\right)}{G_{j}\left(\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right)}\right] \tag{E-16}
\end{equation*}
$$

which allows us to express the mass of entrants in sector j as a function of the mass of entrants in sector ℓ. Inserting $N_{j}^{E}=N_{j}^{E}\left(N_{\ell}^{E}\right)$ into the labor market clearing condition (E-12), and using (E-8), we can solve for the mass of entrants in sector j as follows:

$$
\begin{equation*}
\left(N_{j}^{E}\right)^{\mathrm{eqm}}=\frac{\alpha_{j}^{\sigma-1} \beta_{j}^{\sigma} \theta_{j}\left[\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}}{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma} \theta_{\ell}\left[\left(m_{\ell}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}} \frac{L}{\left(k_{j}+1\right) F_{j}} \tag{E-17}
\end{equation*}
$$

where $\theta_{j} \equiv \frac{\kappa_{j}\left(k_{j}+1\right)}{1 /\left(k_{j}+1\right)-\left(\kappa_{1 j}+\kappa_{j}\right)}$ is the ratio of real revenue-to-utility, which depends only on k_{j}.

Combining (E-17) and (E-12) yields the following equilibrium labor allocation to sector j :

$$
\begin{equation*}
L_{j}^{\mathrm{eqm}}=\left(k_{j}+1\right)\left(N_{j}^{E}\right)^{\mathrm{eqm}} F_{j}=\frac{\alpha_{j}^{\sigma-1} \beta_{j}^{\sigma} \theta_{j}\left[\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}}{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma} \theta_{\ell}\left[\left(m_{\ell}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}} L . \tag{E-18}
\end{equation*}
$$

As shown in Lemma 1 , the sectoral labor allocation satisfies $L_{j}=e_{j} L$, where e_{j} is the sectoral expenditure share given by $e_{j} \equiv N_{j}^{E} \int_{0}^{m_{j}^{d}} p_{j}(m) q_{j}(m) \mathrm{d} G_{j}(m) / w$. From (E-18), we thus directly have

$$
\begin{equation*}
e_{j}^{\mathrm{eqm}}=\frac{\alpha_{j}^{\sigma-1} \beta_{j}^{\sigma} \theta_{j}\left[\left(m_{j}^{d}\right)^{\text {eqm }}\right]^{1-\sigma}}{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma} \theta_{\ell}\left[\left(m_{\ell}^{d}\right)^{\text {eqm }}\right]^{1-\sigma}} . \tag{E-19}
\end{equation*}
$$

Finally, inserting (E-8) and (E-17) into (E-15), and noting (E-19) and the definition of θ_{j}, we can express the lower-tier utility from sector j in the market equilibrium in a compact form as follows:

$$
\begin{equation*}
U_{j}^{\mathrm{eqm}}=\frac{\alpha_{j} e_{j}^{\mathrm{eqm}}}{\theta_{j}} \frac{1}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}} \tag{E-20}
\end{equation*}
$$

Making use of the upper-tier utility (E-1) and of (E-20), the utility U across all sectors is then

$$
\begin{equation*}
U^{\mathrm{eqm}}=\left\{\frac{\sum_{j=1}^{J} \alpha_{j}^{\sigma-1} \beta_{j}^{\sigma}\left[\left(m_{j}^{d} \mathrm{eqq}^{\mathrm{eq}}\right]^{1-\sigma}\right.}{\left[\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma} \theta_{\ell}\left[\left(m_{\ell}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}\right]^{\frac{\sigma-1}{\sigma}}}\right\}^{\frac{\sigma}{\sigma-1}}=\frac{\left\{\sum_{j=1}^{J} \alpha_{j}^{\sigma-1} \beta_{j}^{\sigma}\left[\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}\right\}^{\frac{\sigma}{\sigma-1}}}{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma} \theta_{\ell}\left[\left(m_{\ell}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}} \tag{E-21}
\end{equation*}
$$

When the upper-tier utility function is of the Cobb-Douglas form, $\sigma=1$, so that ($\mathrm{E}-19$) reduces to $e_{j}^{\text {eqm }}=\beta_{j} \theta_{j} / \sum_{\ell=1}^{J}\left(\beta_{\ell} \theta_{\ell}\right)$. Expression (E-20) can then be rewritten as $U_{j}^{\text {eqm }}=$ $\left[\alpha_{j} \beta_{j} / \sum_{\ell=1}^{J}\left(\beta_{\ell} \theta_{\ell}\right)\right]\left[1 /\left(m_{j}^{d}\right)\right.$ eqm $]$. Hence, (E-21) reduces to

$$
U^{\mathrm{eqm}}=\prod_{j=1}^{J}\left[\frac{\alpha_{j} \beta_{j}}{\sum_{\ell=1}^{J}\left(\beta_{\ell} \theta_{\ell}\right)} \frac{1}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right]^{\beta_{j}} .
$$

Optimal allocation. We next derive the expressions for the optimal cutoffs and quantities in the cara case. From the first-order conditions (12), the optimal consumptions must satisfy

$$
\frac{\alpha_{j} \mathrm{e}^{-\alpha_{j} q_{j}\left(m_{j}^{d}\right)}}{\alpha_{j} \mathrm{e}^{-\alpha_{j} q_{j}(m)}}=\frac{m_{j}^{d}}{m} \quad \text { and } \quad \frac{\alpha_{j} \mathrm{e}^{-\alpha_{j} q_{j}\left(m_{j}^{d}\right)}}{\alpha_{\ell} \mathrm{e}^{-\alpha_{\ell} q_{\ell}\left(m_{\ell}^{d}\right)}}=\frac{\delta_{j}}{\delta_{\ell}} \frac{m_{j}^{d}}{m_{\ell}^{d}} .
$$

The first conditions, together with $q_{j}\left(m_{j}^{d}\right)=0$, can be solved to yield:

$$
\begin{equation*}
q_{j}(m)=\frac{1}{\alpha_{j}} \ln \left(\frac{m_{j}^{d}}{m}\right) \quad \text { for } \quad 0 \leq m \leq m_{j}^{d} \tag{E-22}
\end{equation*}
$$

Plugging (E-22) into U_{j} and letting $\bar{m}_{j} \equiv\left(1 / G_{j}\left(m_{j}^{d}\right)\right] \int_{0}^{m_{j}^{d}} m \mathrm{~d} G_{j}(m)$ denote the average value of m, we obtain:

$$
\begin{equation*}
U_{j}=\left(1-\frac{\bar{m}_{j}}{m_{j}^{d}}\right) N_{j}^{E} G_{j}\left(m_{j}^{d}\right)=\frac{N_{j}^{E} G_{j}\left(m_{j}^{d}\right)}{k_{j}+1} \tag{E-23}
\end{equation*}
$$

where we have used the property of the Pareto distribution that $\bar{m}_{j}=\left[k_{j} /\left(k_{j}+1\right)\right] m_{j}^{d}$ to obtain the second equality. Plugging (E-22) into (11) and integrating, the resource constraint becomes

$$
\begin{equation*}
\sum_{j=1}^{J} N_{j}^{E}\left[\frac{L}{\alpha_{j}} \frac{k_{j}}{\left(k_{j}+1\right)^{2}} m_{j}^{d} G_{j}\left(m_{j}^{d}\right)+F_{j}\right]=L \tag{E-24}
\end{equation*}
$$

Assuming that the upper-tier utility function is given by (E-1), the planner's problem can be redefined using (E-23) and (E-24) as follows:

$$
\begin{array}{cl}
\max _{\left\{N_{j}^{E}, m_{j}^{d}\right\}} & \widehat{V} \equiv L \cdot\left\{\sum_{j=1}^{J} \beta_{j}\left[\frac{N_{j}^{E} G_{j}\left(m_{j}^{d}\right)}{k_{j}+1}\right]^{\frac{\sigma-1}{\sigma}}\right\}^{\frac{\sigma}{\sigma-1}} \\
\text { s.t. } & \sum_{j=1}^{J} N_{j}^{E}\left[\frac{L}{\alpha_{j}} \frac{k_{j}}{\left(k_{j}+1\right)^{2}} m_{j}^{d} G_{j}\left(m_{j}^{d}\right)+F_{j}\right]=L . \tag{E-26}
\end{array}
$$

Denoting by $\widehat{\delta}$ the Lagrange multiplier of this redefined problem, the first-order conditions with respect to N_{j}^{E} and m_{j}^{d} are given by

$$
\begin{align*}
& \frac{\beta_{j} \widehat{V}}{N_{j}^{E}} \frac{\left[\frac{N_{j}^{E} G_{j}\left(m_{j}^{d}\right)}{k_{j}+1}\right]^{\frac{\sigma-1}{\sigma}}}{\sum_{\ell=1}^{J} \beta_{\ell}\left[\frac{N_{\ell}^{E} G_{\ell}\left(m_{\ell}^{d}\right)}{k_{\ell}+1}\right]^{\frac{\sigma-1}{\sigma}}}=\widehat{\delta}\left[\frac{L}{\alpha_{j}} \frac{k_{j}}{\left(k_{j}+1\right)^{2}} m_{j}^{d} G_{j}\left(m_{j}^{d}\right)+F_{j}\right] \tag{E-27}\\
& \frac{\beta_{j} \widehat{V}}{N_{j}^{E}} \frac{\left[\frac{N_{j}^{E} G_{j}\left(m_{j}^{d}\right)}{k_{j}+1}\right]^{\frac{\sigma-1}{\sigma}}}{\sum_{\ell=1}^{J} \beta_{\ell}\left[\frac{N_{\ell}^{E} G_{\ell}\left(m_{\ell}^{d}\right)}{k_{\ell}+1}\right]^{\frac{\sigma-1}{\sigma}}}=\widehat{\delta} \frac{L}{\alpha_{j}} \frac{k_{j}}{\left(k_{j}+1\right)^{2}} \frac{G_{j}\left(m_{j}^{d}\right)}{G_{j}^{\prime}\left(m_{j}^{d}\right)}\left[G_{j}\left(m_{j}^{d}\right)+m_{j}^{d} G_{j}^{\prime}\left(m_{j}^{d}\right)\right] .
\end{align*}
$$

Because the left-hand side is common, we obtain the optimal cutoffs

$$
\begin{equation*}
\left(m_{j}^{d}\right)^{\mathrm{opt}}=\left[\frac{\alpha_{j} F_{j}\left(m_{j}^{\max }\right)^{k_{j}}\left(k_{j}+1\right)^{2}}{L}\right]^{\frac{1}{k_{j}+1}} \tag{E-28}
\end{equation*}
$$

and quantities $q_{j}^{\mathrm{opt}}(m)=\left(1 / \alpha_{j}\right) \ln \left[\left(m_{j}^{d}\right)^{\mathrm{opt}} / m\right]$. Note that (E-28) implies that

$$
\begin{equation*}
\left[\frac{\left(m_{j}^{d}\right)^{\mathrm{opt}}}{m_{j}^{\max }}\right]^{k_{j}}=G_{j}\left(\left(m_{j}^{d}\right)^{\mathrm{opt}}\right)=\frac{\alpha_{j} F_{j}\left(k_{j}+1\right)^{2}}{L} \frac{1}{\left(m_{j}^{d}\right)^{\mathrm{opt}}} \tag{E-29}
\end{equation*}
$$

a relationship that we will use repeatedly in what follows.
Using (E-29), the right-hand side of (E-27) becomes $\widehat{\delta} F_{j}\left(k_{j}+1\right)$. Moreover, taking the ratio of ($\mathrm{E}-27$) for sectors j and ℓ, we have

$$
\frac{N_{j}^{E}}{N_{\ell}^{E}}=\left(\frac{\beta_{j}}{\beta_{\ell}}\right)^{\sigma}\left[\frac{G_{j}\left(m_{j}^{d}\right)}{k_{j}+1}\right]^{\sigma-1}\left[\frac{G_{\ell}\left(m_{\ell}^{d}\right)}{k_{\ell}+1}\right]^{1-\sigma}\left[\frac{\left(k_{j}+1\right) F_{j}}{\left(k_{\ell}+1\right) F_{\ell}}\right]^{-\sigma}
$$

for all $j=1,2, \ldots, J$. Plugging this relationship into the resource constraint (E-26), and using (E-29), we readily obtain the optimal mass of entrants in sector j :

$$
\begin{equation*}
\left(N_{j}^{E}\right)^{\mathrm{opt}}=\frac{\alpha_{j}^{\sigma-1} \beta_{j}^{\sigma}\left[\left(m_{j}^{d} \mathrm{opt}^{\mathrm{opt}}\right]^{1-\sigma}\right.}{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma}\left[\left(m_{\ell}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}} \frac{L}{\left(k_{j}+1\right) F_{j}}, \tag{E-30}
\end{equation*}
$$

which implies the optimal labor allocation as follows:

$$
L_{j}^{\mathrm{opt}}=\left(k_{j}+1\right)\left(N_{j}^{E}\right)^{\mathrm{opt}} F_{j}=\frac{\alpha_{j}^{\sigma-1} \beta_{j}^{\sigma}\left[\left(m_{j}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}}{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma}\left[\left(m_{\ell}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}} L
$$

Since the optimal labor allocation satisfies $L_{j}^{\mathrm{opt}}=e_{j}^{\mathrm{opt}} L$ by Lemma 2, the social expenditure share on good j is therefore given by

$$
\begin{equation*}
e_{j}^{\mathrm{opt}}=\frac{\alpha_{j}^{\sigma-1} \beta_{j}^{\sigma}\left[\left(m_{j}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}}{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma}\left[\left(m_{\ell}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}} \tag{E-31}
\end{equation*}
$$

Finally, plugging (E-29) and (E-30) into (E-23), the lower-tier utility from sector j at the
optimal allocation can be expressed as

$$
\begin{equation*}
U_{j}^{\mathrm{opt}}=\alpha_{j} e_{j}^{\mathrm{opt}} \frac{1}{\left(m_{j}^{d}\right)^{\mathrm{opt}}} \tag{E-32}
\end{equation*}
$$

so that

$$
\begin{equation*}
U^{\mathrm{opt}}=\left\{\sum_{j=1}^{J} \alpha_{j}^{\sigma-1} \beta_{j}^{\sigma}\left[\left(m_{j}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}\right\}^{\frac{1}{\sigma-1}} . \tag{E-33}
\end{equation*}
$$

When the upper-tier utility function is of the Cobb-Douglas form, $\sigma=1$, so that (E-31) reduces to $e_{j}^{\mathrm{opt}}=\beta_{j}$. Expression (E-32) can then be rewritten as $U_{j}^{\mathrm{opt}}=\alpha_{j} \beta_{j} /\left(m_{j}^{d}\right)^{\mathrm{opt}}$. Hence, (E-33) reduces to

$$
U^{\mathrm{opt}}=\prod_{j=1}^{J}\left[\frac{\alpha_{j} \beta_{j}}{\left(m_{j}^{d}\right)^{\mathrm{opt}}}\right]^{\beta_{j}} .
$$

E.2. Ces subutility. We briefly summarize the equilibrium and optimal allocations in the case with ces subutility functions, $u_{j}\left(q_{j}(m)\right)=q_{j}(m)^{\rho_{j}}$, where $0<\rho_{j}<1$, and Pareto distribution functions, $G_{j}(m)=\left(m / m_{j}^{\max }\right)^{k_{j}}$. As in the existing literature, we also assume that $\widetilde{U}_{j}\left(U_{j}\right)=U_{j}^{1 / \rho_{j}}$ and that $f_{j}>0$.

First, with ces subutility functions, $1-r_{u_{j}}\left(q_{j}(m)\right)=\mathcal{E}_{u_{j}, q_{j}(m)}=\rho_{j}$ holds for all m, and $q_{j}(m)=\left(m_{j}^{d} / m\right)^{1 /\left(1-\rho_{j}\right)} q_{j}^{d}$ holds for both the equilibrium and optimal allocations. Thus, the ZEP and ZCP conditions, (7) and (6), are equivalent to the ZESP and ZCSP conditions, (16) and (17). The resulting equilibrium and optimum cutoffs are therefore the same and given by

$$
\begin{equation*}
\left(m_{j}^{d}\right)^{\mathrm{eqm}}=\left(m_{j}^{d}\right)^{\mathrm{opt}}=m_{j}^{\max }\left[\frac{F_{j}}{f_{j}} \frac{k_{j}\left(1-\rho_{j}\right)-\rho_{j}}{\rho_{j}}\right]^{\frac{1}{k_{j}}} \tag{E-34}
\end{equation*}
$$

which implies that the demand functions $q_{j}(m)$ are common between the equilibrium and the optimum for all $m \leq m_{j}^{d}$. In particular q_{j}^{d} can be obtained from (6) or (17) as follows:

$$
\begin{equation*}
q_{j}^{d}=\frac{f_{j}}{L} \frac{\rho_{j}}{1-\rho_{j}} \frac{1}{m_{j}^{d}} \tag{E-35}
\end{equation*}
$$

Second, given the foregoing results, $\nu_{j}\left(q_{j}(m)\right)=\zeta_{j}\left(q_{j}(m)\right)$ holds for all $m \leq m_{j}^{d}$, so that the expressions in the braces of (9) and those of (19) are the same. Thus, the equilibrium and optimal masses of entrants satisfy

$$
\begin{equation*}
\left(N_{j}^{E}\right)^{\mathrm{eqm}}=e_{j}^{\mathrm{eqm}} \frac{L \rho_{j}}{k_{j} F_{j}} \quad \text { and } \quad\left(N_{j}^{E}\right)^{\mathrm{opt}}=e_{j}^{\mathrm{opt}} \frac{L \rho_{j}}{k_{j} F_{j}} \tag{E-36}
\end{equation*}
$$

Third, the conditions (3) for equilibrium intersectoral consumption can be rewritten as

$$
\frac{U_{j}^{\frac{1-\sigma\left(1-\rho_{j}\right)}{\sigma \rho_{j}}}}{U_{\ell}^{\frac{1-\sigma\left(1-\rho_{\ell}\right)}{\sigma \rho_{\ell}}}}=\left(\frac{\beta_{j} \rho_{j}}{\beta_{\ell} \rho_{\ell}}\right)\left[\frac{f_{j} \rho_{j}}{L\left(1-\rho_{j}\right)}\right]^{\rho_{j}-1}\left[\frac{f_{\ell} \rho_{\ell}}{L\left(1-\rho_{\ell}\right)}\right]^{1-\rho_{\ell}} \frac{\left(m_{j}^{d}\right)^{-\rho_{j}}}{\left(m_{\ell}^{d}\right)^{-\rho_{\ell}}}
$$

To obtain closed-form solutions, we assume that $\sigma=1$, so that the above expression reduces to the Cobb-Douglas case:

$$
\begin{equation*}
\frac{U_{j}}{U_{\ell}}=\left(\frac{\beta_{j} \rho_{j}}{\beta_{\ell} \rho_{\ell}}\right)\left[\frac{f_{j} \rho_{j}}{L\left(1-\rho_{j}\right)}\right]^{\rho_{j}-1}\left[\frac{f_{\ell} \rho_{\ell}}{L\left(1-\rho_{\ell}\right)}\right]^{1-\rho_{\ell}} \frac{\left(m_{j}^{d}\right)^{-\rho_{j}}}{\left(m_{\ell}^{d}\right)^{-\rho_{\ell}}} \tag{E-37}
\end{equation*}
$$

Using (E-34) and (E-35), together with $q_{j}(m)=\left(m_{j}^{d} / m\right)^{1 /\left(1-\rho_{j}\right)} q_{j}^{d}$ and the Pareto distribution, the lower-tier utility is given by

$$
\begin{equation*}
U_{j}=\frac{N_{j}^{E} k_{j} F_{j}}{L}\left[\frac{f_{j} \rho_{j}}{L\left(1-\rho_{j}\right)}\right]^{\rho_{j}-1}\left(m_{j}^{d}\right)^{-\rho_{j}} \tag{E-38}
\end{equation*}
$$

Plugging (E-38) into (E-37) and using (E-36), we then obtain

$$
\frac{\left(N_{j}^{E}\right)^{\mathrm{eqm}}}{\left(N_{\ell}^{E}\right)^{\mathrm{eqm}}}=\frac{\beta_{j} \rho_{j}}{\beta_{\ell} \rho_{\ell}} \frac{k_{\ell} F_{\ell}}{k_{j} F_{j}}=\frac{e_{j}^{\mathrm{eqm}}}{e_{\ell}^{\mathrm{eqm}}} \frac{\rho_{j}}{\rho_{\ell}} \frac{k_{\ell} F_{\ell}}{k_{j} F_{j}} \Rightarrow e_{\ell}^{\mathrm{eqm}}=\frac{\beta_{\ell}}{\beta_{j}} e_{j}^{\mathrm{eqm}}
$$

Since $\sum_{\ell=1}^{J} e_{\ell}=1$, we finally obtain

$$
\begin{equation*}
e_{j}^{\mathrm{eqm}}=\frac{\beta_{j}}{\sum_{\ell=1}^{J} \beta_{\ell}}=\beta_{j} \tag{E-39}
\end{equation*}
$$

Using (E-36) and (E-39), expression (E-38) can be rewritten as

$$
U_{j}^{\mathrm{eqm}}=\beta_{j} \rho_{j}\left[\frac{f_{j} \rho_{j}}{L\left(1-\rho_{j}\right)}\right]^{\rho_{j}-1}\left[\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right]^{-\rho_{j}}
$$

which yields

$$
U^{\mathrm{eqm}}=\prod_{j=1}^{J}\left\{\beta_{j} \rho_{j}\left[\frac{f_{j} \rho_{j}}{L\left(1-\rho_{j}\right)}\right]^{\rho_{j}-1}\left[\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right]^{-\rho_{j}}\right\}^{\frac{\beta_{j}}{\rho_{j}}}
$$

Turning to the optimal allocation, the conditions (15) for optimal intersectoral consump-
tion can be rewritten as

$$
\begin{equation*}
\frac{U_{j}^{\frac{1-\sigma\left(1-\rho_{j}\right)}{\sigma \rho_{j}}}}{U_{\ell}^{\frac{1-\sigma\left(1-\rho_{\ell}\right)}{\sigma \rho_{\ell}}}}=\left(\frac{\beta_{j}}{\beta_{\ell}}\right)\left[\frac{f_{j} \rho_{j}}{L\left(1-\rho_{j}\right)}\right]^{\rho_{j}-1}\left[\frac{f_{\ell} \rho_{\ell}}{L\left(1-\rho_{\ell}\right)}\right]^{1-\rho_{\ell}} \frac{\left(m_{j}^{d}\right)^{-\rho_{j}}}{\left(m_{\ell}^{d}\right)^{-\rho_{\ell}}} \tag{E-40}
\end{equation*}
$$

Assume again that the upper-tier utility is Cobb-Douglas, i.e., $\sigma \rightarrow 1$. In that case, we can use the same procedure as above to obtain

$$
\frac{\left(N_{j}^{E}\right)^{\mathrm{opt}}}{\left(N_{\ell}^{E}\right)^{\mathrm{opt}}}=\frac{\beta_{j}}{\beta_{\ell}} \frac{k_{\ell} F_{\ell}}{k_{j} F_{j}}=\frac{e_{j}^{\mathrm{opt}}}{e_{\ell}^{\mathrm{opt}}} \frac{\rho_{j}}{\rho_{\ell}} \frac{k_{\ell} F_{\ell}}{k_{j} F_{j}} \Rightarrow e_{\ell}^{\mathrm{opt}}=\frac{\beta_{\ell} / \rho_{\ell}}{\beta_{j} / \rho_{j}} e_{j}^{\mathrm{opt}}
$$

so that

$$
e_{j}^{\mathrm{opt}}=\frac{\beta_{j} / \rho_{j}}{\sum_{\ell=1}^{J}\left(\beta_{\ell} / \rho_{\ell}\right)}
$$

Using (E-36), expression (E-38) can be rewritten as

$$
U_{j}^{\mathrm{opt}}=\frac{\beta_{j}}{\sum_{\ell=1}^{J}\left(\beta_{\ell} / \rho_{\ell}\right)}\left[\frac{f_{j} \rho_{j}}{L\left(1-\rho_{j}\right)}\right]^{\rho_{j}-1}\left[\left(m_{j}^{d}\right)^{\mathrm{opt}}\right]^{-\rho_{j}},
$$

which yields

$$
U^{\mathrm{opt}}=\prod_{j=1}^{J}\left\{\frac{\beta_{j}}{\sum_{\ell=1}^{J}\left(\beta_{\ell} / \rho_{\ell}\right)}\left[\frac{f_{j} \rho_{j}}{L\left(1-\rho_{j}\right)}\right]^{\rho_{j}-1}\left[\left(m_{j}^{d}\right)^{\mathrm{opt}}\right]^{-\rho_{j}}\right\}^{\frac{\beta_{j}}{\rho_{j}}} .
$$

F. Expressions for quantifying the CES-CARA case.

Quantifying the Cobb-Douglas-CARA case is relatively easy because when $\sigma \rightarrow 1$ the equilibrium and optimal expenditure shares are independent of the α_{j} parameters and the cutoffs m_{j}^{d} (which subsume other parameters such as the sunk entry costs F_{j}). This no longer holds in the ces-cara case, which makes the quantification more involved. However, we can proceed as follows.

Let $\left\{\widehat{e}_{j}^{\text {eqm }}\right\}_{j=1}^{J}$ be the equilibrium expenditure shares from the data, and let $\left\{\widehat{\theta}_{j}\right\}_{j=1}^{J}$ be the revenue-to-utility ratios obtained from the standard deviation formula in Appendix C.2. Recall that in the Cobb-Douglas case those two pieces of information allows us to back out $\left\{\widehat{\beta}_{j}^{\text {eqm }}\right\}_{j=1}^{J}$ by solving

$$
\widehat{e}_{j}^{\mathrm{eqm}}=\frac{\widehat{\beta}_{j}^{\mathrm{eqm}} \widehat{\theta}_{j}}{\sum_{\ell=1}^{J} \widehat{\beta}_{\ell}^{\mathrm{eqm}} \widehat{\theta}_{\ell}}, \quad \sum_{j} \widehat{\beta}_{j}^{\mathrm{eqm}}=1
$$

In the ces case, using (E-19), the equilibrium expenditure share can be rewritten as

$$
\widehat{e}_{j}^{\mathrm{eqm}}=\frac{\alpha_{j}^{\sigma-1} \beta_{j}^{\sigma} \widehat{\theta}_{j}\left[\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}}{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma} \widehat{\theta}_{\ell}\left[\left(m_{\ell}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}}=\frac{\left[\frac{\alpha_{j} \beta_{j}}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right]^{\sigma-1} \beta_{j} \widehat{\theta}_{j}}{\sum_{\ell=1}^{J}\left[\frac{\alpha_{\ell} \beta_{\ell}}{\left(m_{\ell}^{d}\right)^{\mathrm{eqm}}}\right]^{\sigma-1} \beta_{\ell} \widehat{\theta}_{\ell}}=\frac{\widetilde{\beta}_{j}^{\mathrm{eqm}} \widehat{\theta}_{j}}{\sum_{\ell=1}^{J} \widetilde{\beta}_{\ell}^{\mathrm{eqm}} \widehat{\theta}_{\ell}}
$$

where $\widetilde{\beta}_{j}^{\text {eqm }} \equiv\left[\left(\alpha_{j} \beta_{j}\right) /\left(m_{j}^{d}\right)^{\text {eqm }}\right]^{\sigma-1} \beta_{j}$, and where $\widehat{e}_{j}^{\text {eqm }}$ and $\widehat{\theta}_{j}$ come from the data. Clearly, $\widetilde{\beta}_{j}^{\text {eqm }}=$ const. $\times \widehat{\beta}_{j}^{\text {eqm }}$ is a solution to the foregoing equation, i.e., the ces β parameters are proportional to the Cobb-Douglas β parameters. The constant term is shown to disappear in the end.

Using the same transformation for the β terms as above, the equilibrium utility (E-21) can be rewritten as

$$
U^{\mathrm{eqm}}=\frac{\left\{\sum_{j=1}^{J} \alpha_{j}^{\sigma-1} \beta_{j}^{\sigma}\left[\left(m_{j}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}\right\}^{\frac{\sigma}{\sigma-1}}}{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma} \widehat{\theta}_{\ell}\left[\left(m_{\ell}^{d}\right)^{\mathrm{eqm}}\right]^{1-\sigma}}=\frac{\left(\sum_{j=1}^{J} \widetilde{\beta}_{j}^{\mathrm{eqm}}\right)^{\frac{\sigma}{\sigma-1}}}{\sum_{\ell=1}^{J} \widetilde{\beta}_{\ell}^{\mathrm{eqm}} \widehat{\theta}_{\ell}}
$$

which, using $\widetilde{\beta}_{j}^{\text {eqm }}=$ const. $\times \widehat{\beta}_{j}^{\text {eqm }}$, can be rewritten as

$$
U^{\mathrm{eqm}}=(\text { const. })^{\frac{\sigma}{\sigma-1}-1} \frac{\left(\sum_{j=1}^{J} \widehat{\beta}_{j}^{\mathrm{eqm}}\right)^{\frac{\sigma}{\sigma-1}}}{\sum_{\ell=1}^{J} \widehat{\beta}_{\ell}^{\mathrm{eqm}} \widehat{\theta}_{\ell}}=(\text { const. })^{\frac{\sigma}{\sigma-1}-1} \frac{1}{\sum_{\ell=1}^{J} \widehat{\beta}_{\ell}^{\mathrm{eqm}} \widehat{\theta}_{\ell}}
$$

Turning to the optimal expenditure share, we have

$$
e_{j}^{\mathrm{opt}}=\frac{\alpha_{j}^{\sigma-1} \beta_{j}^{\sigma}\left[\left(m_{j}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}}{\sum_{\ell=1}^{J} \alpha_{\ell}^{\sigma-1} \beta_{\ell}^{\sigma}\left[\left(m_{\ell}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}}=\frac{\left[\frac{\alpha_{j} \beta_{j}}{\left(m_{j}^{d} \mathrm{opt}^{\mathrm{ot}}\right.}\right]^{\sigma-1} \beta_{j}}{\sum_{\ell=1}^{J}\left[\frac{\alpha_{\ell} \beta_{\ell}}{\left(m_{\ell}^{d}\right)^{\mathrm{opt}}}\right]^{\sigma-1} \beta_{\ell}}=\frac{\widetilde{\beta}_{j}^{\mathrm{opt}}}{\sum_{\ell=1}^{J} \widetilde{\beta}_{\ell}^{\mathrm{opt}}}
$$

where $\widetilde{\beta}_{j}^{\text {opt }} \equiv\left[\left(\alpha_{j} \beta_{j}\right) /\left(m_{j}^{d}\right)^{\mathrm{opt}}\right]^{\sigma-1} \beta_{j}$. We know that

$$
\frac{\widetilde{\beta}_{j}^{\mathrm{eqm}}}{\widetilde{\beta}_{j}^{\mathrm{opt}}}=\left[\frac{\left(m_{j}^{d}\right)^{\mathrm{opt}}}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right]^{\sigma-1} \Rightarrow \widetilde{\beta}_{j}^{\mathrm{opt}}=\left[\frac{\left(m_{j}^{d}\right)^{\mathrm{opt}}}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right]^{1-\sigma} \widetilde{\beta}_{j}^{\mathrm{eqm}}=\text { const. } \times\left[\frac{\left(m_{j}^{d}\right)^{\mathrm{opt}}}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right]^{1-\sigma} \widehat{\beta}_{j}^{\mathrm{eqm}}
$$

The optimal utility can be rewritten as

$$
U^{\mathrm{opt}}=\left\{\sum_{j=1}^{J} \alpha_{j}^{\sigma-1} \beta_{j}^{\sigma}\left[\left(m_{j}^{d}\right)^{\mathrm{opt}}\right]^{1-\sigma}\right\}^{\frac{1}{\sigma-1}}=\left\{\sum_{j=1}^{J}\left[\frac{\alpha_{j} \beta_{j}}{\left(m_{j}^{d}\right)^{\mathrm{opt}}}\right]^{\sigma-1} \beta_{j}\right\}^{\frac{1}{\sigma-1}}=\left(\sum_{j=1}^{J} \widetilde{\beta}_{j}^{\mathrm{opt}}\right)^{\frac{1}{\sigma-1}} .
$$

which can be rewritten as

$$
U^{\mathrm{opt}}=(\text { const. })^{\frac{1}{\sigma-1}}\left(\sum_{j=1}^{J} \widehat{\beta}_{j}^{\mathrm{opt}}\right)^{\frac{1}{\sigma-1}}
$$

where $\widehat{\beta}_{j}^{\mathrm{opt}}=\left[\left(m_{j}^{d}\right)^{\mathrm{opt}} /\left(m_{j}^{d}\right)^{\text {eqm }}\right]^{1-\sigma} \widehat{\beta}_{j}^{\mathrm{eqm}}$. Finally, taking the ratio of $U^{\text {eqm }}$ and U^{opt}, we obtain

$$
\frac{U^{\text {eqm }}}{U^{\mathrm{opt}}}=\frac{(\text { const. })^{\frac{\sigma}{\sigma-1}-1} \frac{1}{\sum_{\ell=1}^{J} \hat{\beta}_{\ell}^{\mathrm{eqmm}} \hat{\theta}_{\ell}}}{(\text { const. })^{\frac{1}{\sigma-1}}\left(\sum_{j=1}^{J} \widehat{\beta}_{j}^{\mathrm{opt}}\right)^{\frac{1}{\sigma-1}}}=\frac{\frac{1}{\sum_{\ell=1}^{J} \widehat{\hat{\beta}}_{\ell}^{\mathrm{eqmm}} \widehat{\theta}_{\ell}}}{\left\{\sum_{j=1}^{J}\left[\frac{\left(m_{j}^{d} \mathrm{opt}\right.}{\left(m_{j}^{d}\right)^{\mathrm{eqm}}}\right]^{1-\sigma} \widehat{\beta}_{j}^{\mathrm{eqm}}\right\}^{\frac{1}{\sigma-1}}}
$$

We already know $\widehat{\beta}_{j}^{\text {eqm }}$ and $\widehat{\theta}_{j}$. Since the cutoff ratio is a function of k_{j} only, the above expression can be quantified for any given value of σ. Then, using (D-9), we can compute the associated Allais surplus required to quantify the distortions.

PREVIOUS DISCUSSION PAPERS

237 Behrens, Kristian, Mion, Giordano, Murata, Yasusada and Suedekum, Jens, Distorted Monopolistic Competition, November 2016.

236 Beckmann, Klaus, Dewenter, Ralf and Thomas, Tobias, Can News Draw Blood? The Impact of Media Coverage on the Number and Severity of Terror Attacks, November 2016.
Forthcoming in: Peace Economics, Peace Science and Public Policy.
235 Dewenter, Ralf, Dulleck, Uwe and Thomas, Tobias, Does the $4^{\text {th }}$ Estate Deliver? Towars a More Direct Measure of Political Media Bias, November 2016.

234 Egger, Hartmut, Kreickemeier, Udo, Moser, Christoph and Wrona, Jens, Offshoring and Job Polarisation Between Firms, November 2016.

233 Moellers, Claudia, Stühmeier, Torben and Wenzel, Tobias, Search Costs in Concentrated Markets - An Experimental Analysis, October 2016.

232 Moellers, Claudia, Reputation and Foreclosure with Vertical Integration Experimental Evidence, October 2016.

231 Alipranti, Maria, Mitrokostas, Evangelos and Petrakis, Emmanuel, Non-comparative and Comparative Advertising in Oligopolistic Markets, October 2016. Forthcoming in: The Manchester School.

230 Jeitschko, Thomas D., Liu, Ting and Wang, Tao, Information Acquisition, Signaling and Learning in Duopoly, October 2016.

229 Stiebale, Joel and Vencappa, Dev, Acquisitions, Markups, Efficiency, and Product Quality: Evidende from India, October 2016.

228 Dewenter, Ralf and Heimeshoff, Ulrich, Predicting Advertising Volumes: A Structural Time Series Approach, October 2016.

227 Wagner, Valentin, Seeking Risk or Answering Smart? Framing in Elementary Schools, October 2016.

226 Moellers, Claudia, Normann, Hans-Theo and Snyder, Christopher M., Communication in Vertical Markets: Experimental Evidence, July 2016.
Forthcoming in: International Journal of Industrial Organization.
225 Argentesi, Elena, Buccirossi, Paolo, Cervone, Roberto, Duso, Tomaso and Marrazzo, Alessia, The Effect of Retail Mergers on Prices and Variety: An Ex-post Evaluation, June 2016.

224 Aghadadashli, Hamid, Dertwinkel-Kalt, Markus and Wey, Christian, The Nash Bargaining Solution in Vertical Relations With Linear Input Prices, June 2016. Published in: Economics Letters, 145 (2016), pp. 291-294.

223 Fan, Ying, Kühn, Kai-Uwe and Lafontaine, Francine, Financial Constraints and Moral Hazard: The Case of Franchising, June 2016. Forthcoming in: Journal of Political Economy.

Benndorf, Volker, Martinez-Martinez, Ismael and Normann, Hans-Theo, Equilibrium Selection with Coupled Populations in Hawk-Dove Games: Theory and Experiment in Continuous Time, June 2016.
Published in: Journal of Economic Theory, 165 (2016), pp. 472-486.

Forthcoming in: Telecommunications Policy.
220 Dewenter, Ralf, Heimeshoff, Ulrich and Lüth, Hendrik, The Impact of the Market Transparency Unit for Fuels on Gasoline Prices in Germany, May 2016.
Forthcoming in: Applied Economics Letters.
219 Schain, Jan Philip and Stiebale, Joel, Innovation, Institutional Ownership, and Financial Constraints, April 2016.

218 Haucap, Justus and Stiebale, Joel, How Mergers Affect Innovation: Theory and Evidence from the Pharmaceutical Industry, April 2016.

217 Dertwinkel-Kalt, Markus and Wey, Christian, Evidence Production in Merger Control: The Role of Remedies, March 2016.

216 Dertwinkel-Kalt, Markus, Köhler, Katrin, Lange, Mirjam R. J. and Wenzel, Tobias, Demand Shifts Due to Salience Effects: Experimental Evidence, March 2016. Forthcoming in: Journal of the European Economic Association.

215 Dewenter, Ralf, Heimeshoff, Ulrich and Thomas, Tobias, Media Coverage and Car Manufacturers' Sales, March 2016.
Published in: Economics Bulletin, 36 (2016), pp. 976-982.
214 Dertwinkel-Kalt, Markus and Riener, Gerhard, A First Test of Focusing Theory, February 2016.

Heinz, Matthias, Normann, Hans-Theo and Rau, Holger A., How Competitiveness May Cause a Gender Wage Gap: Experimental Evidence, February 2016. Forthcoming in: European Economic Review.

212 Fudickar, Roman, Hottenrott, Hanna and Lawson, Cornelia, What's the Price of Consulting? Effects of Public and Private Sector Consulting on Academic Research, February 2016.

211 Stühmeier, Torben, Competition and Corporate Control in Partial Ownership Acquisitions, February 2016.
Published in: Journal of Industry, Competition and Trade, 16 (2016), pp. 297-308.
210 Muck, Johannes, Tariff-Mediated Network Effects with Incompletely Informed Consumers, January 2016.

209 Dertwinkel-Kalt, Markus and Wey, Christian, Structural Remedies as a Signalling Device, January 2016.
Published in: Information Economics and Policy, 35 (2016), pp. 1-6.
208 Herr, Annika and Hottenrott, Hanna, Higher Prices, Higher Quality? Evidence From German Nursing Homes, January 2016.
Published in: Health Policy, 120 (2016), pp. 179-189.
207 Gaudin, Germain and Mantzari, Despoina, Margin Squeeze: An Above-Cost Predatory Pricing Approach, January 2016.
Published in: Journal of Competition Law \& Economics, 12 (2016), pp. 151-179.
206 Hottenrott, Hanna, Rexhäuser, Sascha and Veugelers, Reinhilde, Organisational Change and the Productivity Effects of Green Technology Adoption, January 2016. Published in: Energy and Ressource Economics, 43 (2016), pp. 172-194.

205 Dauth, Wolfgang, Findeisen, Sebastian and Suedekum, Jens, Adjusting to Globalization - Evidence from Worker-Establishment Matches in Germany, January 2016.

204 Banerjee, Debosree, Ibañez, Marcela, Riener, Gerhard and Wollni, Meike, Volunteering to Take on Power: Experimental Evidence from Matrilineal and Patriarchal Societies in India, November 2015.

203 Wagner, Valentin and Riener, Gerhard, Peers or Parents? On Non-Monetary Incentives in Schools, November 2015.

202 Gaudin, Germain, Pass-Through, Vertical Contracts, and Bargains, November 2015. Published in: Economics Letters, 139 (2016), pp. 1-4.

201 Demeulemeester, Sarah and Hottenrott, Hanna, R\&D Subsidies and Firms' Cost of Debt, November 2015.

200 Kreickemeier, Udo and Wrona, Jens, Two-Way Migration Between Similar Countries, October 2015.
Forthcoming in: World Economy.
199 Haucap, Justus and Stühmeier, Torben, Competition and Antitrust in Internet Markets, October 2015.
Published in: Bauer, J. and M. Latzer (Eds.), Handbook on the Economics of the Internet, Edward Elgar: Cheltenham 2016, pp. 183-210.

198 Alipranti, Maria, Milliou, Chrysovalantou and Petrakis, Emmanuel, On Vertical Relations and the Timing of Technology, October 2015. Published in: Journal of Economic Behavior and Organization, 120 (2015), pp. 117-129.

197 Kellner, Christian, Reinstein, David and Riener, Gerhard, Stochastic Income and Conditional Generosity, October 2015.

196 Chlaß, Nadine and Riener, Gerhard, Lying, Spying, Sabotaging: Procedures and Consequences, September 2015.

195 Gaudin, Germain, Vertical Bargaining and Retail Competition: What Drives Countervailing Power? September 2015.

194 Baumann, Florian and Friehe, Tim, Learning-by-Doing in Torts: Liability and Information About Accident Technology, September 2015.

Defever, Fabrice, Fischer, Christian and Suedekum, Jens, Relational Contracts and Supplier Turnover in the Global Economy, August 2015.

192 Gu, Yiquan and Wenzel, Tobias, Putting on a Tight Leash and Levelling Playing Field: An Experiment in Strategic Obfuscation and Consumer Protection, July 2015. Published in: International Journal of Industrial Organization, 42 (2015), pp. 120-128.

191 Ciani, Andrea and Bartoli, Francesca, Export Quality Upgrading under Credit Constraints, July 2015.

Hasnas, Irina and Wey, Christian, Full Versus Partial Collusion among Brands and Private Label Producers, July 2015.

Dertwinkel-Kalt, Markus and Köster, Mats, Violations of First-Order Stochastic Dominance as Salience Effects, June 2015.
Published in: Journal of Behavioral and Experimental Economics, 59 (2015), pp. 42-46.

188 Kholodilin, Konstantin, Kolmer, Christian, Thomas, Tobias and Ulbricht, Dirk, Asymmetric Perceptions of the Economy: Media, Firms, Consumers, and Experts, June 2015.

187 Dertwinkel-Kalt, Markus and Wey, Christian, Merger Remedies in Oligopoly under a Consumer Welfare Standard, June 2015
Published in: Journal of Law, Economics, \& Organization, 32 (2016), pp. 150-179.
186 Dertwinkel-Kalt, Markus, Salience and Health Campaigns, May 2015
Published in: Forum for Health Economics \& Policy,19 (2016), pp. 1-22.
185 Wrona, Jens, Border Effects without Borders: What Divides Japan's Internal Trade? May 2015.

184 Amess, Kevin, Stiebale, Joel and Wright, Mike, The Impact of Private Equity on Firms' Innovation Activity, April 2015.
Published in: European Economic Review, 86 (2016), pp. 147-160.
183 Ibañez, Marcela, Rai, Ashok and Riener, Gerhard, Sorting Through Affirmative Action: Three Field Experiments in Colombia, April 2015.

182 Baumann, Florian, Friehe, Tim and Rasch, Alexander, The Influence of Product Liability on Vertical Product Differentiation, April 2015.

181 Baumann, Florian and Friehe, Tim, Proof beyond a Reasonable Doubt: Laboratory Evidence, March 2015.

180 Rasch, Alexander and Waibel, Christian, What Drives Fraud in a Credence Goods Market? - Evidence from a Field Study, March 2015.

179 Jeitschko, Thomas D., Incongruities of Real and Intellectual Property: Economic Concerns in Patent Policy and Practice, February 2015. Forthcoming in: Michigan State Law Review.

178 Buchwald, Achim and Hottenrott, Hanna, Women on the Board and Executive Duration - Evidence for European Listed Firms, February 2015.

177 Heblich, Stephan, Lameli, Alfred and Riener, Gerhard, Regional Accents on Individual Economic Behavior: A Lab Experiment on Linguistic Performance, Cognitive Ratings and Economic Decisions, February 2015 Published in: PLoS ONE, 10 (2015), e0113475.

176 Herr, Annika, Nguyen, Thu-Van and Schmitz, Hendrik, Does Quality Disclosure Improve Quality? Responses to the Introduction of Nursing Home Report Cards in Germany, February 2015.

175 Herr, Annika and Normann, Hans-Theo, Organ Donation in the Lab: Preferences and Votes on the Priority Rule, February 2015.
Forthcoming in: Journal of Economic Behavior and Organization.
174 Buchwald, Achim, Competition, Outside Directors and Executive Turnover: Implications for Corporate Governance in the EU, February 2015.

Buchwald, Achim and Thorwarth, Susanne, Outside Directors on the Board, Competition and Innovation, February 2015.

171 Haucap, Justus, Heimeshoff, Ulrich and Siekmann, Manuel, Price Dispersion and Station Heterogeneity on German Retail Gasoline Markets, January 2015.

170 Schweinberger, Albert G. and Suedekum, Jens, De-Industrialisation and Entrepreneurship under Monopolistic Competition, January 2015
Published in: Oxford Economic Papers, 67 (2015), pp. 1174-1185.
169 Nowak, Verena, Organizational Decisions in Multistage Production Processes, December 2014.

168 Benndorf, Volker, Kübler, Dorothea and Normann, Hans-Theo, Privacy Concerns, Voluntary Disclosure of Information, and Unraveling: An Experiment, November 2014. Published in: European Economic Review, 75 (2015), pp. 43-59.

167 Rasch, Alexander and Wenzel, Tobias, The Impact of Piracy on Prominent and Nonprominent Software Developers, November 2014.
Published in: Telecommunications Policy, 39 (2015), pp. 735-744.
166 Jeitschko, Thomas D. and Tremblay, Mark J., Homogeneous Platform Competition with Endogenous Homing, November 2014.

165 Gu, Yiquan, Rasch, Alexander and Wenzel, Tobias, Price-sensitive Demand and Market Entry, November 2014 Forthcoming in: Papers in Regional Science.

164 Caprice, Stéphane, von Schlippenbach, Vanessa and Wey, Christian, Supplier Fixed Costs and Retail Market Monopolization, October 2014.

163 Klein, Gordon J. and Wendel, Julia, The Impact of Local Loop and Retail Unbundling Revisited, October 2014.

162 Dertwinkel-Kalt, Markus, Haucap, Justus and Wey, Christian, Raising Rivals' Costs through Buyer Power, October 2014.
Published in: Economics Letters, 126 (2015), pp.181-184.
161 Dertwinkel-Kalt, Markus and Köhler, Katrin, Exchange Asymmetries for Bads? Experimental Evidence, October 2014.
Published in: European Economic Review, 82 (2016), pp. 231-241.
160 Behrens, Kristian, Mion, Giordano, Murata, Yasusada and Suedekum, Jens, Spatial Frictions, September 2014.

Fonseca, Miguel A. and Normann, Hans-Theo, Endogenous Cartel Formation: Experimental Evidence, August 2014.
Published in: Economics Letters, 125 (2014), pp. 223-225.
158 Stiebale, Joel, Cross-Border M\&As and Innovative Activity of Acquiring and Target Firms, August 2014.
Published in: Journal of International Economics, 99 (2016), pp. 1-15.
157 Haucap, Justus and Heimeshoff, Ulrich, The Happiness of Economists: Estimating the Causal Effect of Studying Economics on Subjective Well-Being, August 2014. Published in: International Review of Economics Education, 17 (2014), pp. 85-97.

156 Haucap, Justus, Heimeshoff, Ulrich and Lange, Mirjam R. J., The Impact of Tariff Diversity on Broadband Diffusion - An Empirical Analysis, August 2014.
Published in: Telecommunications Policy, 40 (2016), pp. 743-754.
Baumann, Florian and Friehe, Tim, On Discovery, Restricting Lawyers, and the Settlement Rate, August 2014.

Hottenrott, Hanna and Lopes-Bento, Cindy, R\&D Partnerships and Innovation Performance: Can There be too Much of a Good Thing? July 2014.
Published in: Journal of Product Innovation Management, 33 (2016), pp. 773-794.
153 Hottenrott, Hanna and Lawson, Cornelia, Flying the Nest: How the Home Department Shapes Researchers' Career Paths, July 2015 (First Version July 2014).
Forthcoming in: Studies in Higher Education.
152 Hottenrott, Hanna, Lopes-Bento, Cindy and Veugelers, Reinhilde, Direct and CrossScheme Effects in a Research and Development Subsidy Program, July 2014.

151 Dewenter, Ralf and Heimeshoff, Ulrich, Do Expert Reviews Really Drive Demand? Evidence from a German Car Magazine, July 2014.
Published in: Applied Economics Letters, 22 (2015), pp. 1150-1153.
150 Bataille, Marc, Steinmetz, Alexander and Thorwarth, Susanne, Screening Instruments for Monitoring Market Power in Wholesale Electricity Markets - Lessons from Applications in Germany, July 2014.

149 Kholodilin, Konstantin A., Thomas, Tobias and Ulbricht, Dirk, Do Media Data Help to Predict German Industrial Production? July 2014.
Published online first in: Journal of Forecasting, 2016.
148 Hogrefe, Jan and Wrona, Jens, Trade, Tasks, and Trading: The Effect of Offshoring on Individual Skill Upgrading, June 2014.
Published in: Canadian Journal of Economics, 48 (2015), pp. 1537-1560.
147 Gaudin, Germain and White, Alexander, On the Antitrust Economics of the Electronic Books Industry, September 2014 (Previous Version May 2014).

146 Alipranti, Maria, Milliou, Chrysovalantou and Petrakis, Emmanuel, Price vs. Quantity Competition in a Vertically Related Market, May 2014.
Published in: Economics Letters, 124 (2014), pp. 122-126.
145 Blanco, Mariana, Engelmann, Dirk, Koch, Alexander K. and Normann, Hans-Theo, Preferences and Beliefs in a Sequential Social Dilemma: A Within-Subjects Analysis, May 2014.
Published in: Games and Economic Behavior, 87 (2014), pp. 122-135.
144 Jeitschko, Thomas D., Jung, Yeonjei and Kim, Jaesoo, Bundling and Joint Marketing by Rival Firms, May 2014.

143 Benndorf, Volker and Normann, Hans-Theo, The Willingness to Sell Personal Data, April 2014.

142 Dauth, Wolfgang and Suedekum, Jens, Globalization and Local Profiles of Economic Growth and Industrial Change, April 2014.
Published in: Journal of Economic Geography, 16 (2016), pp. 1007-1034.
141 Nowak, Verena, Schwarz, Christian and Suedekum, Jens, Asymmetric Spiders: Supplier Heterogeneity and the Organization of Firms, April 2014.

Hasnas, Irina, A Note on Consumer Flexibility, Data Quality and Collusion, April 2014.
139 Baye, Irina and Hasnas, Irina, Consumer Flexibility, Data Quality and Location Choice, April 2014.

Aghadadashli, Hamid and Wey, Christian, Multi-Union Bargaining: Tariff Plurality and Tariff Competition, April 2014.
Published in: Journal of Institutional and Theoretical Economics (JITE), 171 (2015), pp. 666-695.

137 Duso, Tomaso, Herr, Annika and Suppliet, Moritz, The Welfare Impact of Parallel Imports: A Structural Approach Applied to the German Market for Oral Anti-diabetics, April 2014.
Published in: Health Economics, 23 (2014), pp. 1036-1057.
136 Haucap, Justus and Müller, Andrea, Why are Economists so Different? Nature, Nurture and Gender Effects in a Simple Trust Game, March 2014.

135 Normann, Hans-Theo and Rau, Holger A., Simultaneous and Sequential Contributions to Step-Level Public Goods: One vs. Two Provision Levels, March 2014. Published in: Journal of Conflict Resolution, 59 (2015), pp.1273-1300.

134 Bucher, Monika, Hauck, Achim and Neyer, Ulrike, Frictions in the Interbank Market and Uncertain Liquidity Needs: Implications for Monetary Policy Implementation, July 2014 (First Version March 2014).

133 Czarnitzki, Dirk, Hall, Bronwyn, H. and Hottenrott, Hanna, Patents as Quality Signals? The Implications for Financing Constraints on R\&D? February 2014. Published in: Economics of Innovation and New Technology, 25 (2016), pp. 197-217.

132 Dewenter, Ralf and Heimeshoff, Ulrich, Media Bias and Advertising: Evidence from a German Car Magazine, February 2014. Published in: Review of Economics, 65 (2014), pp. 77-94.

131 Baye, Irina and Sapi, Geza, Targeted Pricing, Consumer Myopia and Investment in Customer-Tracking Technology, February 2014.

130 Clemens, Georg and Rau, Holger A., Do Leniency Policies Facilitate Collusion? Experimental Evidence, January 2014.

Older discussion papers can be found online at:
http://ideas.repec.org/s/zbw/dicedp.html

Heinrich-Heine-University of Düsseldorf
Düsseldorf Institute for
Competition Economics (DICE)
Universitätsstraße 1_40225 Düsseldorf www.dice.hhu.de

[^0]: *Université du Québec à Montréal (ESG-UQÀM), Canada; National Research University Higher School of Economics, Russian Federation; and cepr. E-mail: behrens.kristian@uqam. ca.
 ${ }^{\dagger}$ Department of Economics, University of Sussex; cer; cepr; and cesifo. E-mail: g.mion@sussex.ac.uk
 \ddagger Nihon University Population Research Institute (NUPRI); University Research Center, Nihon University, Japan; and National Research University Higher School of Economics, Russian Federation. E-mail: murata.yasusada@nihon-u.ac.jp
 ${ }^{\S}$ Düsseldorf Institute for Competition Economics (dice), Heinrich-Heine-Universität Düsseldorf, Germany; CEPR; and cesifo. E-mail: suedekum@dice.hhu.de

[^1]: ${ }^{1}$ See Section 4 below, in particular Table 1 for more details about the data. Notice the large number of competitors in each sector, which suggests that monopolistic competition may be a reasonable approximation of the market structure.

[^2]: ${ }^{2}$ This insight is consistent with Epifani and Gancia (2011), who compare equilibrium and optimal allocations in a multi-sector ces model with homogeneous firms. Our paper, by contrast, develops a model with general consumer preferences and heterogeneous firms where ces subutilities are considered as one example.

[^3]: ${ }^{3}$ This result relies on the concept of the Allais surplus (see Allais 1943, 1977) which determines the resourcecost minimizing allocation to achieve the equilibrium utility level.

 4 Our equilibrium analysis is related to Zhelobodko et al. (2012) and Mrazova and Neary (2014). It is more broadly related to the work by Fabinger and Weyl (2013) on pass-through under general demand structures.

[^4]: ${ }^{5} \mathrm{We}$ assume that the second-order conditions for profit maximization, $r_{u_{j}^{\prime}}(x) \equiv-x u_{j}^{\prime \prime \prime}(x) / u_{j}^{\prime \prime}(x)<2$ for all $j=1,2, \ldots, J$, hold (Zhelobodko et al., 2012, p.2771).
 ${ }^{6}$ To alleviate notation, we henceforth suppress the 'eqm' superscript when there is no possible confusion.

[^5]: ${ }^{8}$ In the main text, we consider the 'primal' first-best problem where the planner maximizes utility subject to the economy's resource constraint. When quantifying the gap between the equilibrium and the optimum in Section 4, we will analyze a 'dual' problem where the planner minimizes the resource cost subject to a utility level. The latter allows us to derive a welfare measure - the so-called Allais surplus (Allais, 1943, 1977) - that can be used in contexts where equivalent or compensating variations (or related criteria to compare different equilibria) cannot be readily applied. More details are relegated to Appendix D and the supplementary Appendix F.

[^6]: ${ }^{9}$ Dhingra and Morrow (2014) refer to $1-\mathcal{E}_{u_{j}, q_{j}(m)}=\left[u_{j}\left(q_{j}(m)\right)-\delta_{j} m q_{j}(m)\right] / u_{j}\left(q_{j}(m)\right)$ as the social markup, which captures the utility from consumption of a variety net of its resource costs. Moreover, they label $\left[p_{j}(m)-m w\right] / p_{j}(m)=r_{u_{j}}\left(q_{j}(m)\right)$ as the private markup. We adopt their terminology but redefine the two markups in a slightly different way.

[^7]: ${ }^{10}$ Note that the cutoff and quantity distortions can influence the entry distortions, although the former inefficiencies do not depend on the latter ones.

[^8]: ${ }^{11}$ The proofs are virtually identical to the ones in Appendices A and B , except that $\partial U / \partial U_{j}$ needs to be replaced with $\left(\partial U / \partial \widetilde{U}_{j}\right)\left(\partial \widetilde{U}_{j} / \partial U_{j}\right)$. Observe that in a single-sector model, the choice of \widetilde{U}_{j} does not affect distortions because it is a monotonic transformation of the overall utility in that case. In a multi-sector model, however, sectoral allocations and thus aggregate distortions are affected by \widetilde{U}_{j}.
 ${ }^{12}$ Should $(\sigma-1) / \sigma>\rho_{j}$ hold, goods are Hicks-Allen complements (see, e.g., Matsuyama, 1995), so that multiple equilibria with some inactive sectors may arise, a case that we exclude from our analysis in what follows.

[^9]: ${ }^{13}$ Hsieh and Klenow (2009) consider a heterogeneous firms model where ρ_{j} 's are the same across all sectors. In contrast, Epifani and Gancia (2011) allow for heterogeneity in ρ_{j} across sectors yet consider homogeneous firms within sectors.

[^10]: ${ }^{14}$ This need not always be the case, however. For example, Dhingra and Morrow (2014) derive general conditions for cutoff and quantity distortions in a single-sector framework. In their model with an arbitrary subutility function and an arbitrary productivity distribution, it is possible that m_{j}^{*} exceeds $\left(m_{j}^{d}\right)^{\text {eqm }}$. In that case, all firms (even the least productive ones) would underproduce, whereas in our model some firms (the least productive ones) always overproduce from a social point of view.

[^11]: ${ }^{15}$ Our paper differs from a different strand of literature that quantifies the aggregate welfare impacts of public policies. Hsieh and Klenow (2009), for example, compare observed equilibria in China and India with counterfactual equilibria in which those countries would attain the "U.S. efficiency" level. Unlike this literature, we compare the observed market equilibrium and the optimal allocation that the social planner would choose.
 ${ }^{16}$ Further details concerning the datasets can be found in Appendix C.1.

[^12]: ${ }^{17}$ The dataset contains 3 employment variables. We use employment on December 31st from the French Business Register (OCSANE) source.

[^13]: ${ }^{18}$ The sector [1] 'Agriculture' also exhibits insufficient entry in both countries, and particularly so in the UK, but hardly any manufacturing sector in either country has too few entrants. Notice that these findings do, of course, not imply that the mass of entrants in manufacturing is larger than that in services in equilibrium, since they refer to a sector-by-sector comparison of the equilibrium and the optimal entry.

[^14]: ${ }^{19}$ We know from the results in Corollary 2 that entry in the CARA case is efficient if and only if all k_{j} 's are the same. Hence, one could think of setting all k_{j} 's to same common value to shut down entry distortions. However, the common value of k that is chosen has an effect on the magnitude of cutoff distortions.

[^15]: ${ }^{20}$ To derive this property, we use $W^{\prime}(x)=W(x) /\{x[1+W(x)]\}$.

[^16]: ${ }^{21}$ We first match the R\&D expenditure data with our 34 sectors and compute, for each sector, the ratio of R\&D expenditure to gross output at basic prices (code R49) with the latter information coming from inputoutput tables. We then multiply the ratio by total employment in that sector, divide it by the number of firms to get a proxy measure of F_{j} and f_{j}, and subtract it from the employment of each firm. We ignore those firms ending up with a non-positive employment.

[^17]: ${ }^{22}$ Additional information on the equilibrium cutoffs and quantities can be found in Behrens and Murata (2007) and in Behrens et al. (2014).

