
 

 

 
  

NO 416 

Forecasting Recessions in Germany with                                
Machine Learning 
 
Philip Rademacher 
 
 
September 2024 



 

IMP RIN T  
 
DICE DISCUSSION PAPER 
 
Published by: 
Heinrich-Heine-University Düsseldorf,  
Düsseldorf Institute for Competition Economics (DICE),  
Universitätsstraße 1, 40225 Düsseldorf, Germany 
www.dice.hhu.de 
 
Editor: 
Prof. Dr. Hans-Theo Normann 
Düsseldorf Institute for Competition Economics (DICE) 
Tel +49 (0) 211-81-15125, E-Mail normann@dice.hhu.de 
 
All rights reserved. Düsseldorf, Germany 2024. 
 
ISSN 2190-9938 (online) / ISBN 978-3-86304-415-2 
The working papers published in the series constitute work in 
progress circulated to stimulate discussion and critical comments. 
Views expressed represent exclusively the authors’ own opinions 
and do not necessarily reflect those of the editor. 



1 
 

Forecasting Recessions in Germany  

with Machine Learning 

Philip Rademacher* 

September 2024 

 

 

Abstract: 

This paper applies machine learning to forecast business cycles in the German economy using a high-

dimensional dataset with 73 indicators, primarily from the OECD Main Economic Indicator Database, 

covering a time period from 1973 to 2023. Sequential Floating Forward Selection (SFFS) is used to select 

the most relevant indicators and build compact, explainable, and performant models. Therefore, 

regularized regression models (LASSO, Ridge) and tree-based classification models (Random Forest, 

and Logit Boost) are used as challenger models to outperform a probit model containing the term 

spread as a predictor. All models are trained on data from 1973-2006 and evaluated on a hold-out-

sample starting in 2006. The study reveals that fewer indicators are necessary to model recessions. 

Models built with SFFS have a maximum of eleven indicators. Furthermore, the study setting shows 

that many indicators are stable across time and business cycles. Machine learning models prove 

particularly effective in predicting recessions during periods of quantitative easing, when the predictive 

power of the term spread diminishes. The findings contribute to the ongoing discussion on the use of 

machine learning in economic forecasting, especially in the context of limited and imbalanced data. 
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1. INTRODUCTION  

After the German economy had just recovered from its pandemic-related downturn, the risk of a new 

recession has risen dramatically since the war in Ukraine. Recessions are associated with potential 

welfare losses, making them an act of strength for the population and policymakers. For this reason, 

many papers have analyzed indicators and methods that can be used to forecast business cycles at an 

early stage. 

In recent years, machine learning (ML) techniques have been applied to model business cycles in the 

United States. These studies were often able to find new indicators or improve the forecasting power 

when compared to conventional probit models. However, the research remains diverse, with no clear 

consensus favoring a specific ML technique. The contributions differ in their results depending on the 

classification method, indicators, and validation strategy used. In addition, the question of how many 

indicators are necessary to produce accurate predictions is ambiguous. 

In contrast to the majority of literature that focuses on the United States, this contribution relies on a 

high-dimensional dataset for Germany spanning from 1973 to 2023. The major objectives are to 

analyze ML's potential to outperform the predictive power of simple probit models, the number of 

indicators required to achieve reliable predictions, and the stability of these models across different 

business cycles. 

Regarding the classification techniques, this paper examines the predictive power of LASSO, Ridge, 

Random Forest, and Logit Boost in comparison to a probit model. For the purpose of determining the 

number of indicators, a Sequential Floating Forward Selection (SFFS) is applied. This algorithm builds 

models starting from the strongest indicator and adds more indicators as long as the forecasts can be 

improved. A key advantage of this approach is that the selection of indicators is validated on the 

training data, which avoids a look-ahead bias. In contrast to previous contributions, the performance is 

evaluated on a large hold-out sample period starting in 2006, while the entire process of model 

optimization and indicator selection is confined to historical data spanning from 1973 to 2005. SHAP 

values are used to assess indicators' stability over time. 

2. LITERATURE REVIEW 

This article treats predicting recessions as a classification task. Consequently, the literature review does 

not cover studies that forecast recessions by modeling continuous variables, such as GDP growth. 

The yield curve and the term spread, or the difference between short-term and long-term interest 

rates, play a crucial role in forecasting recessions. Since the seminal paper by Estrella and Hardouvelis 

(1991) a negative term spread is regarded as the most reliable early warning signal of an imminent 

recession. Their univariate probit models were built on the observation that prior to many US-
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recessions short-term rates were higher than long-term rates. Many research contributions confirmed 

the predictive power of the term spread in other countries (see e.g. Chinn & Kucko, 2015) or improved 

the models by adding more indicators, such as interest rates, stock prices, bond spreads, price trends 

or survey-based indicators on consumer or business confidence (e.g., Estrella & Mishkin, 1998, Gilchrist 

& Zakrajsek 2012, Christiansen et al., 2014, Pönka, 2017, Hasse & Lajaunie, 2020, Nissilä, 2020). 

Simultaneously, researchers discussed methodological extensions of static forecast models, such as the 

dynamic model (Nyberg, 2010) that accounts for the autocorrelation structure, and a business-cycle-

specific model (Chauvet & Potter, 2005) that allows the variance to vary across cycles. 

In economic research, probit models have traditionally been the tool of choice. However, they have the 

disadvantage, that they can handle only a few indicators simultaneously. Therefore, either only a few 

indicators are analyzed in combination, or high dimensional datasets are reduced to common factors 

and then included in models. Examples of this approach include the works of Christiansen et al. (2014), 

Chen, Iqbal & Lai (2011), and Pönka (2017). 

In recent years, there has been a shift towards the application of machine-learning (ML) techniques. 

Numerous algorithms have been applied to business cycle forecasting, including regularized 

regressions, neural networks, and tree-based ensemble learners. However, the literature has so far 

mainly focused on the United States. We can broadly categorize the ML literature into two groups based 

on their goals: those that apply machine learning to discover previously unknown early warning 

indications and those that try to increase the prediction ability compared to probit models. 

The first category's contributions build on the model's ability to focus on important indicators for their 

prediction. Ng (2014) employed boosting to sift through more than a hundred indicators for the USA 

and identify strong ones. She concluded that less than ten indicators had a high predictive power, 

including numerous bond spreads. However, the predictive power of single indicators varied greatly 

between business cycles and with the forecast horizon. More recently, Nevasalmi (2022) implemented 

a similar strategy, taking into account the data imbalance through cost-sensitive learning. His dataset 

was larger due to the inclusion of numerous lags. Among more than 1000 indicators, he could confirm 

the high predictive power of interest rate spreads. The contributions by Choi et al. (2023) and Cadahia 

Delgado et al. (2022) address a more specific research question. They investigate whether the term 

spread, defined as the difference between a 10-year and a 3-month term, represents the most optimal 

maturity combination. While Choi et al. (2023) confirmed the high predictive power of the traditionally 

used combination with the help of a penalized logistic regression, Cadahia Delgado et al. (2022) 

identified the difference between a 6- and 3-month term as most useful. 
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Contributions in the second category use ML-techniques to challenge the forecasts of some benchmark 

models. The ability of ML-techniques to improve forecasts relies on their capability to select relevant 

features and their higher resilience to overfitting. Non-parametric methods can also achieve 

improvements through better recognition of non-linearities and interaction effects between indicators. 

The methods used in the literature are very diverse and range from boosting (Berge 2015, Döpke et al. 

2015, 2017) and support vector machines (Plakandaras et al. 2017) to a large-scale comparison of 

different methods (Vrontos et al. 2021, Yazdani 2020, Psimopolous 2020, Zyatkov & Krivorotko 2021). 

Although many contributions refer to the USA, a direct comparison of the results is not possible due to 

the different datasets and research settings. However, in all studies, one ML-technique outperformed 

the benchmark. For example, Vrontos et. al. (2021) achieved the best predictions with penalized logit 

regression, k-nearest neighbours, and Bayesian generalized linear models, while Yazdani (2020) with 

Random Forest and Zyatkov & Krivorotko (2021) with neural networks.  Applications for Germany are 

the contributions by Döpke et al. (2015, 2017), that applied Logitboost, and Psimopoulus (2020), which 

implemented several tree-based ensemble methods as well as k-nearest-neighbors and support vector 

machines. 

The contributions by Puglia & Tucker (2020, 2021) critically examine the performance of ML methods 

and highlight that their performance depends on the chosen validation strategy. Specifically, they 

explore how ML methods perform based on the number of indicators used. In an exhaustive search, 

they evaluated 106 combinations of indicators across six different classification methods, employing 

two different validation strategies. This comprehensive analysis resulted in a total of 1272 trained 

models. When using k-fold cross-validation, ML methods achieved better performance than the 

classical probit model. However, when considering a validation strategy that accounts for the time 

series structure, the probit model outperformed ML methods.  

The general problem with k-fold cross-validation is that the time series data is shuffled, so the models 

receive information on future recessions during training. While this is less problematic if the trained 

models are subsequently evaluated completely out-of-sample, a mixed approach—where data 

partitions overlap for tuning and evaluation—often leads to overoptimistic results. Unfortunately, 

many contributions in the ML literature on recession forecasting evaluate performance entirely in-

sample, relying on metrics from the validation folds. This paper considers Puglia & Tucker's critique and 

implements a more restrictive research setting (see chapter 5). Throughout the entire process, the 

models never receive future information for training. 
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3. DATA 

3.1 RECESSIONS 

The concept of recessions lacks a universally accepted definition. Heileman (2019) emphasizes an easily 

overlooked fact: business cycles and recessions are statistical constructs, whose temporal 

classifications vary greatly depending on the underlying definition. This is why numerous definitions 

exist side by side.  

The National Bureau of Economic Research (NBER), a research institute that dates business cycles in 

the United States, defines a recession as “a significant decline in economic activity spread across the 

economy, lasting more than a few months, normally visible in real GDP, real income, employment, 

industrial production, and wholesale-retail sales.” (NBER, 2008). Their definition is widely used in the 

empirical literature for the USA.  

The present article uses the business cycles released by the German Council of Economic Experts 

(GCEE), whose approach is closely related to the NBER’s methodology (GCEE, 2023). In Germany, they 

identified seven recessions for the period from 1950 to 2023. The last recession started in the last 

quarter of 2019 and overlapped with the lockdown during the coronavirus pandemic in 2020. Figure 1 

provides an overview of the recession phases and also shows their relationship to GDP growth. One 

advantage of this definition of recession is that they provide the exact start and end month of a 

recession. 

 

Figure 1: The periods highlighted in blue indicate recessions as classified by the German Council of Economic Experts, 
whereas the periods highlighted in orange indicate periods with negative GDP growth rates in two subsequent quarters. The 

black line shows the GDP growth rates compared to the same period in the previous year. 
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The recession definitions provided by expert boards, such as the GCEE, are not strictly rule-based and 

therefore contain an element of subjectivity. An alternative concept is the technical recession, which 

occurs when GDP decreases in two subsequent quarters. Both concepts of recession overlap to some 

extent, as Figure 1 shows. The blue periods indicate GCEE recessions, while the orange periods 

represent technical recessions. It is noticeable that the GCEE recessions start earlier than the decline 

in GDP, namely immediately after the peak of the growth rates, and end at their trough. In contrast, 

technical recessions are much shorter. They start later but last a little longer, as the recovery of the 

growth rates is still included as long as they are negative. This observation implies the following: Models 

that can predict a recession twelve months in advance are also able to predict the GDP decline, but 

much earlier than the recession. 

3.2 INDICATORS 

To forecast recessions, this paper uses a large set of predictors, predominantly from the OECD Main 

Economic Indicators Database. Ideally, indicators should fulfill the following requirements: They should 

be (1) released monthly in real time, (2) not subject to major revisions, and (3) available for a long 

period of time. (See also: Döpke 2015, p. 43) 

The last requirement is applied to ensure that the dataset has as many past recessions as possible. In 

this paper, the starting year was set at 1973 to ensure that the consumer confidence indicator, a well-

known recession indicator, is available for the whole study period.1 

The other requirements aim to prevent the use of future information for forecasting (look-ahead-bias). 

Specifically, the restriction on monthly data excludes artificially interpolated monthly values derived 

from quarterly data. Interpolation shifts future information into the past, where it was not originally 

known. When indicators are revised or not published in real time, a similar problem can arise. In these 

cases, the forecasts would be based on figures that had not even been published in this form at the 

time of the forecast. For those reasons, GDP growth rates are excluded, as such data is published 

quarterly and subject to subsequent revisions. Industrial production has also been removed because 

revisions are frequently carried out here. To identify indicators that are published with delay, the 

initially uploaded data from 2021-2022 was analyzed. In order to keep many indicators in the dataset, 

real-time publication is defined generously. Only indicators with a publication delay exceeding, on 

average, two months were excluded from the sample.  

Further indicators were added to the study sample due to their frequent use in the literature. These 

include two stock indices, namely the DAX and the SP 500. Although the latter primarily reflects US 

 
1 Indicator values before 1990 refer to West Germany. 
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economic trends, some contributions have observed a predictive power for recessions in other 

countries. (e.g., Nissilae 2020) As the DAX was first launched in 1988, retrospectively calculated values 

were used for the previous period. (Stehle et al., 1996, p. 24)  

Field Examples 

Financial Long-term interest rates, Interbank Rates, Term Spread 

International Real Effective Exchange Rates, Export Orders 

Labor Market Unemployment Rate, Job vacancies 

Prices Oil Prices, Housing-Prices, Energy Prices 

Real Economy Orders, Producer Price Index 

Stock Market Standard & Poors 500, DAX 

Survey-Based Business Situation, Orders Inflow, Consumer Confidence 

Table 1: Thematic overview of indicators and selected examples. 

Furthermore, the growth rate of the M1 and M3 monetary aggregates in the eurozone, oil prices, the 

US term spread, the difference between the German and US term spread and some US bond spreads 

were added to the study sample. The US term spread has frequently been used to successfully forecast 

recessions in other countries, and the difference between the US and domestic term spread has proven 

to be a reliable indicator to predict recessions in Germany (Nyberg 2010). Table 1 provides an overview 

of the indicators' thematic coverage; Appendix A1 contains a complete list of indicators with data 

sources and applied transformations. 

In general, indicators are included as differences or percentage changes from the previous year. 

Exceptions are indicators whose values are stationary over time, such as interest rates or survey-based 

indicators with a fixed scale. Indicators that were indexed to a certain year are only included as 

percentage changes in the study sample.  

4. CLASSIFIERS 

Predicting recessions is a classification task, as the recession indicator 𝑦𝑡 is a binary variable with the 

values: 

𝑦𝑡 = {
1,
0,

 
if recession in period t 

(1) 
if expansion in period t 

All classification models estimate the probability of a recession occurring within one year in the future, 

as a function 𝐹(. . ) of some indicators 𝑋𝑡−ℎ at the time of the forecasts. The models are calibrated with 

a threshold of 50%, i.e. probabilities higher than this value indicate a future recession. 

Pr(𝑦𝑡 = 1|𝑋𝑡−ℎ) = 𝐹(𝑋𝑡−ℎ) (2) 

if Pr (𝑦𝑡 > 0.5|𝑋𝑡−ℎ) then 𝑦̂𝑡 = 1  
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Two groups of classifiers will be used to forecast recessions.  

On the one hand, probit and regularized logistic regression are from the group of generalized linear 

models, and on the other hand, Random Forest and Logit Boost are ensemble classifiers that are based 

on decision trees. While linear models have the advantage of being easy to interpret due to their 

coefficients, they are restricted by their parametric structure. Interaction effects and non-linearities 

must be specified ex ante. Tree-based methods, on the other hand, can model non-linear relationships 

and interaction effects between indicators easily due to their non-parametric structure. 

4.1 LOGISTIC AND PROBIT REGRESSION 

Both, logistic and probit regression, parameterize the relationship between the indicators and the 

recession variable in a linear way with coefficients (𝑦𝑡̂ =  𝛽0 + 𝛽𝑇𝑥𝑡−ℎ). The main difference to the 

linear model is that both binary regression models use a sigmoid function, ensuring the predictions are 

probabilities bounded between 0 and 1. As a result, both regression models lack a closed form and 

therefore the estimation is done iteratively with maximum likelihood. The logistic regression uses the 

cumulative distribution function of the logistic distribution as the sigmoid function, while the probit 

model uses the same of the standard normal distribution. 

This study uses probit regression only for the benchmark model, with the term spread as a single 

predictor. For the challenger models, built with sequential forward selection, two variants of logistic 

regression are applied. Since a logistic regression with several indicators can quickly overfit, both 

variants add a penalty to the maximization problem (formula 3), which ensures that coefficients of less 

relevant indicators are closer to zero. Two penalties are used, namely the L1 penalty (also called Least 

Absolute Shrinkage, LASSO), and the L2 penalty (Ridge). The LASSO model minimizes the sum of the 

absolute values of the coefficients (formula 4, Tibshirani, 1996), while the Ridge model minimizes the 

sum of the squared coefficients (formula 5, Hoerl & Kennard, 1970). 

max
𝛽0,𝛽

 ∑[𝑦𝑡(𝛽0 + 𝛽′𝑥𝑡−ℎ) − log(1 + 𝑒𝛽0+𝛽′𝑥𝑡−ℎ)]

𝑁

𝑖=1

 

 

(3) 

−𝜆 ∑ |𝛽𝑗|

𝑝

𝑖=1

 (4) 

−𝜆 ∑ 𝛽𝑗²

𝑝

𝑖=1

 (5) 
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4.2 RANDOM FOREST 

Random Forest (Breimann, 2001) consists of numerous randomized decision trees (𝑆). The randomness 

results from the fact, that each of the trees was trained on a different random subsample of the training 

data. Every subsample only contained a fixed number of observations and indicators, whereby 

observations could be included in the sample more than once. The random sampling leads to unique 

trees, that are largely independent of each other.  

Random Forest 

For 𝑠 = 1,2, … 𝑆: 

a) Sample observations with replacement from the training data. 

b) Train a decision tree, where each split considers a random subset of all available features. 

Classify new observations by taking the majority class vote of the 𝑆 trees. 

 

Random Forest is an ensemble method that combines single decision trees with majority voting: Each 

decision tree gives a prediction and if the majority (e.g. 60%) of the decision trees predict a recession, 

the final recession probability would be 60%. Combining many random decision trees with the principle 

of majority voting, makes Random Forest more resilient to overfitting (Hastie et al., 2009, pp. 587-588). 

4.3 LOGIT BOOST  

The algorithm was developed by Friedman et al. (2000) as a statistical view of Adaboost. They examined 

that Adaboost can be understood as an additive logistic regression model. The loss function was the 

main difference between Adaboost and additive logistic regression, as Adaboost minimizes an 

exponential loss function. With their Logit Boost algorithm, they bring boosting even closer to logistic 

regression by implementing a logistic loss function. 

Logit Boost (Friedman et al. 2000) 

1. Start with equal weights for all periods 𝑤𝑡 =
1

𝑇
 ∀ 𝑡 = 1 … 𝑇 and an initial guess for the 

recession probability 𝑝(𝑥𝑡−ℎ) = 0.5 and 𝐹(𝑥) = 0. 

2. Repeat for 𝑚 = 1,2, … 𝑀: 

a.) Compute the differences between the predicted probabilities and the observed 

outcome (𝑧𝑡) and the resulting weights. 

𝑧𝑡 =
𝑦𝑡 − 𝑝(𝑥𝑡−ℎ)

𝑝(𝑥𝑡−ℎ)(1 − 𝑝(𝑥𝑡−ℎ))
 

𝑤𝑡 = 𝑝(𝑥𝑡−ℎ)(1 − 𝑝(𝑥𝑡−ℎ)) 

b.) Fit the function 𝑓𝑚(𝑥𝑡−ℎ) on 𝑧𝑡 using the weights 𝑤𝑡. In the implementation 𝑓𝑚 is a 

regression tree stump. 
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c.) Update 𝐹(𝑥𝑡−ℎ) ← 𝐹(𝑥𝑡−ℎ) + 𝑙𝑓𝑚(𝑥𝑡−ℎ) with the learning rate 𝑙. Update probabilities 

from the new 𝐹(𝑥𝑡−ℎ): 

𝑝(𝑥𝑡−ℎ) ←
𝑒𝐹(𝑥𝑡−ℎ)

𝑒𝐹(𝑥𝑡−ℎ) + 𝑒−𝐹(𝑥𝑡−ℎ)
 

 

The basic idea of boosting is to combine several weak learners (𝑀) in a sequential way to a strong 

classifier: Starting with an initial prediction that is the same for all periods, i.e. a recession probability 

of 50%, a regression tree with only one node is used to explain the difference between the initial 

prediction and the observed states. However, as the tree is a stump, it can only slightly improve the 

initial predictions. The new predictions are calculated by adding the predicted difference of the first 

tree multiplied with the learning rate to the initial prediction. More trees will be added to further 

reduce the difference between the predictions and the observed outcome. This process continues until 

there is no difference anymore or a fixed number of trees is reached. The final prediction is calculated 

by adding all the trees predictions multiplied with the learning rate to initial prediction. 

5. EMPIRICAL DESIGN 

In the first step, the time series is divided into a train and a hold-out sample. The train sample spans 

from 1973 to December 2005 and includes four recession phases, while the hold-out sample begins in 

January 2006 and includes two recession phases. The hold-out sample is only used to evaluate the 

model's predictive power. 

The train sample is used to select relevant indicators, tune hyperparameters, and train the final models. 

An expanding window with three passes is applied to evaluate the selected features and 

hyperparameters. Therefore, the models are trained on a subsample of the train sample and then 

tested on a subsequent subsample of the training dataset (which are called the training and validation 

fold). In the first pass, the training fold covers the period from 1974 to 1983, and the validation fold 

covers the period until 1992. In the second pass, the training fold is extended by the validation fold 

from the first pass, and a new subsample is used for validation (period between 1992 and 2001). In the 

last run, the validation fold covers the period from 2001 to 2005. Figure 2 illustrates the training and 

validation folds, which were built in such a way that two conditions were fulfilled: First, the initial 

training fold contains one complete business cycle, and second, the validation folds of the first and 

second passes contain the year before the subsequent recession (but not the recession itself).  
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Figure 2: Implementation of the expanding window: Blue periods indicate the training folds, and orange areas represent the 
validation folds. The validation folds in the 1st and 2nd passes include the twelve months (dark grey) before the subsequent 

recession period (light grey). 

This way, each combination of indicators from the sequential floating forward selection and the 

hyperparameters are validated. Finally, the performance metrics of the different validation folds are 

averaged, and the hyperparameter or indicator set with the highest mean performance is selected.  

The model's performance is measured using the negative Brier score (eq. 6). The Brier score is the mean 

squared deviation between the model prediction 𝑦̂𝑡 and the actual state 𝑦𝑡 for all observations in the 

validation fold 𝑇. If the predictions are always close to the actual state, the model performance is high, 

and the Brier score is small. The negative Brier score is therefore maximized. 

𝐵𝑆 =
1

𝑇
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑇

𝑡=1

  (6) 

The expanding window approach ensures that the chronology of the observations is always retained, 

which allows the calculation of in-sample metrics for the different validation folds, i.e., the business 

cycles between 1983 and 2006. The metrics there tend to be higher than in the hold-out sample, as 

the validation folds were used to optimize the models. The metrics therefore primarily reflect the 

model's ability to adapt to historical data and do not allow any conclusions about their predictive power 

in the future.  

To assess the model's predictive power, only data after 2006 is used. Due to this strict separation, the 

out-of-sample results are worse than in related contributions that use a hybrid setting (e.g., Vrontos et 
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al., 2021) or evaluate the performance entirely in the validation samples of the rolling window (e.g., 

Nevasalmi, 2022). 

5.1 FEATURE SELECTION 

In this study, the embedded ability of the ML models to focus on relevant predictors is augmented by 

a wrapper method, which is called Sequential Forward Floating Selection (SFFS). (Pudil et. al 1994) This 

selection method is often used for classifiers that lack regularization and therefore cannot perform 

embedded feature selection. (Raschka & Mirjalili, 2017) The method requires two components to 

select relevant indicators: a classifier (such as logistic regression or Random Forest) and data to train 

and evaluate the predictive power of the models. 

The algorithm is initiated by training and evaluating classification models using a single indicator. The 

indicator with the best performance is selected. After that, each remaining indicator is added to the 

selected indicator, and models with two indicators are trained and validated. The indicator that has the 

highest performance, in conjunction with the indicator from the initial step, is added to the feature set. 

This step is repeated until the model performance no longer improves. The whole process is known as 

sequential forward selection. In the floating variant used here, after each iteration it is checked whether 

a feature can be removed from the feature set without a decrease in performance.  

The procedure is computationally complex and is therefore often referred to as a "brute-force" or 

"greedy" method. The selected variables are also nested, i.e. the method develops a strong path 

dependency and builds local-optimal models, as the best feature is selected conditionally on the 

already selected variables. However, it has two advantages: First, it selects variables based on their 

performance within the selected classifier. Therefore, the selected indicators differ between the 

classifiers. Non-parametric classifiers can rely on different variables than parametric ones. Second, the 

indicators are selected based on their performance in the validation fold. During the selection process, 

an indicator therefore has to prove its forecasting power on new data, which reduces the risk of 

overfitting. (Guyon & Elisseeff, 2003) This is primarily intended to prevent the selection of indicators 

that only work well for one business cycle but do not have a general predictive power. 

5.2 HYPERPARAMETER TUNING 

The ML-methods have various hyperparameters that must be defined prior to model training. In this 

study, for Random Forest, the depth of the trees, the size of the samples, and the number of features 

are tuned. For Logit Boost, the learning rate and the number of trees, and for LASSO/ Ridge, the 

strength of the penalty are defined within a tuning. The hyperparameter tuning is conducted using the 

hyperparameter optimization framework Optuna (Akiba et al. 2019). 
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5.3 OUT-OF-SAMPLE EVALUATION 

Various metrics are used on the out-of-sample data set to assess the forecasting power of the final 

models. Most of the metrics can be calculated using four numbers that describe the model accuracy: 

• True Positives (TP): Number of correctly predicted recessions 

• False Positives (FP): Number of incorrectly predicted recessions 

• True Negatives (TN): Number of correctly predicted expansion periods 

• False negatives (FN): number of incorrectly predicted expansion periods 

Recall (eq. 7) shows the percentage of recessions that the model was able to predict correctly. 

Conversely, a 70% recall indicates that the model incorrectly classified 30% of the recession months as 

expansions. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

Precision (eq. 8) is used to measure the reliability of a recession forecast. It shows the proportion of 

true recessions to the total number of predicted recessions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 

The F1 score (eq. 9) is a composite measure that combines precision and recall using the harmonic 

mean. This is helpful as there is a trade-off between recall and precision. When a model predicts all 

recessions, it often results in a loss of precision, as it needs to label more periods as recessions in order 

to achieve a high recall. 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

The area under the curve (AUC) is the only metric that is not derived from the number of correctly and 

incorrectly classified periods but from the ROC curve. An AUC of 1 implies that the model has relevant 

explanatory power, whereas 0.5 indicates that the model is comparable to random chance. The AUC 

primarily illustrates the alignment of recession probabilities with actual recessions, i.e., whether they 

increase before a recession and decrease before an expansion period. However, the AUC does not 

evaluate the final predictions based on the cut-off value. A model with a high AUC and low values of 

the other metrics implies that the model would be better if we change the cut-off value. The difficulty 

is that the models are trained with a cut-off-value of 50% and when forecasting future recessions, we 

would assume that this cut-off-value is optimal. Changing the cut-off value to improve predictions on 

the hold-out sample would not be practical, as we would not be able to determine the ideal cut-off 
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value ex ante (look ahead bias). For this reason, the performance evaluation focuses on the other 

metrics. 

5.4 SHAP 

SHAP values are calculated to analyze the indicators' impact on recession forecasts. The theory of 

SHapley Additive exPlanations (SHAP) originates from cooperative game theory and was used to 

distribute the outcome of a game fairly among a coalition of players (Shapley, 1997). 

The Shapley value for a player 𝑖 (eq. 10) is the sum of the weighted marginal contributions of player 

𝑖 to all possible coalitions 𝑆 of other players which the player can join. The marginal contribution is the 

outcome of the coalition including player 𝑖 𝐹S⊂{i}(xS⊂{i}) minus the outcome without player 𝑖 FS(XS). 

The individual marginal contributions are weighted by a fraction. |F|! represents the number of 

coalitions that can be formed with all players. |S|! is the number of players in the coalition and 

(|F| − |S| − 1)! the number of possibilities in which further players can join the coalition after play 𝑖 

has already joined. 

Φ𝑖 = ∑
|S|! (|F| − |S| − 1)!

|F|!
[FS⊂{I}(XS⊂{I}) − FS(XS)]

S⊆F{I}

 (10) 

This theoretical framework was transferred to machine learning as a model-agnostic explainer. 

(Lundberg & Lee, 2017). In Machine Learning, SHAP values have two important properties that are 

desirable: (1.) The SHAP values of all indicators always add up to the model prediction. (2.) SHAP values 

are consistent across various models, allowing for a comparison of the impact of indicators across 

models such as LASSO and Logit Boost, and business cycles such as the recessions of 1992 and 2008. 
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6. RESULTS 

6.1 SEQUENTIAL FLOATING FORWARD SELECTION (SFFS) 

In SFFS, the classification models reach their optimum very quickly. After that, their performance either 

does not improve anymore or decreases. The performance of Random Forest in the validation samples 

already starts to decrease after the inclusion of the fifth indicator. Ridge, LASSO, and Logit Boost 

processed a larger number of indicators (namely 7, 10, and 11) before their performance reached an 

optimum. Basically, the results indicate that there are a few strong indicators that drive up performance 

at the beginning, but then there are no more that can further improve the predictive power in later 

iterations.  

Figure 2 illustrates how the model's performance improves or deteriorates with the inclusion of more 

indicators. The shaded areas show the optimal number of indicators for the different classifiers. As a 

(negative) Brier score closer to zero indicates better model performance, LASSO slightly outperforms 

Ridge and Logit Boost. Random Forest has the lowest performance in the validation samples. 

 

Figure 3: Model performance after each iteration of the SFFS, measured as negative Brier-Score. 

  



16 
 

 

Random Forest Logit Boost RIDGE LASSO 

Call Money/Interbank 
Rate 

Business Situation (DF) 
Business Confidence 

Indicator (DF) 
Consumer Confidence 

Long-term interest 
rates (10 years) 

Finnished Goods 
Stocks (DF) 

Consumer Confidence Export Orders 

Term Spread Orders Inflow Selling Prices (DF) Order Books (DF) 

Unemployment rate 
(SA) 

Orders Inflow (DF) 
BAA vs. 10-Year 
Treasury (DF) 

Orders Inflow (DF) 

 Selling Prices (DF) 
Term Spread Germany 

– Term Spread USA 
(DF) 

Selling Prices (DF) 

 AAA vs. 10-Year 
Treasury (DF) 

Term Spread USA (DF) Term Spread USA (DF) 

 Monetary Aggregate 
M1 (%) 

Energy Prices (%) 
Term Spread Germany 

– Term Spread USA 
(DF) 

 
Term Spread Germany 

– Term Spread USA 
(DF) 

 
BAA vs. 10-Year 
Treasury (DF) 

 Term Spread USA (DF)  
Call Money/Interbank 

Rate 

 Energy Prices (%)  Energy Prices (%) 

 Housing Prices (%)   

Table 2: Indicators selected by SFFS. Ordered by category and its frequency: ● Financial Markets, ● Prices, ● Business 
Tendency / Consumer Confidence Surveys, ● Labor Market. Indicators with “%” denote percentage changes, and with DF 

differences to the same month in the previous year. 

Table 2 shows which indicators were selected in the SFFS. The indicators are sorted according to their 

category, which is color-coded. The category with the most indicators in the model is placed at the top. 

The Random Forest model primarily uses indicators from the financial market that are well-known from 

the literature. These include the term spread, a long-term interest rate (10 years), and a short-term 

interest rate (interbank interest rate, less than 24 hours). The sole indicator from a different thematic 

field is the unemployment rate in a seasonal adjusted form. 

In contrast, the other model consists of between 7 and 11 indicators. The three models can be 

summarized as follows: They contain indicators from three thematic fields. All models include energy 

prices (Logit Boost also includes housing prices). In addition, there is a roughly equal number of survey-

based indicators and financial market indicators. These differ to some extent. Selling prices appear in 

all three models, and in 2 out of 3 models, the consumer confidence indicator, orders inflow, the US 

term spread, the difference between the US and German term spread, and a bond spread are included. 

It is very noticeable that the German term spread was not selected as an indicator, but either the US 
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term spread or the difference to it. The Random Forest model differs from the other models by not 

using dynamic indicators, meaning it does not select any changes or differences from the previous year. 

In summary, the models are very diverse regarding their number of indicators included and the 

indicators themselves. Random Forest employs a relatively small indicator set, predominantly from the 

financial markets. Conversely, the other models rely on approximately twice as many indicators, with 

an additional focus on expectations and (energy) prices. 

6.2 MODEL PERFORMANCE 

The evaluation of the models’ predictive power is conducted in two steps. First a visual analysis of the 

plotted recession probabilities is applied, and then a more mathematical approach with some 

performance measures. The plots in Figure 3 show the probabilities for a recession occurring in twelve 

months. A probability exceeding the red line, which indicates a 50% threshold, leads to a recession 

prediction. The yellow areas correspond to recessions shifted 12 months backwards. These regions 

denote the periods during which a model should ideally predict a recession.  

The primary focus of the model evaluation lies on the forecasts generated for the hold-out sample, 

starting from the black line in 2006, as this data is unknown to the models. For the sake of 

completeness, the plots in Figure 3 also show the recession probabilities from the validation periods 

obtained in the expanding windows. However, the recession probabilities prior to 2006 may exhibit an 

overly optimistic bias, as feature selection and hyperparameter tuning were conducted here. 
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Figure 4: Recession Probability Plots 

When looking at the plots, one can see how well the model predictions match with the actual state of 

the economy. All four ML-models predict the true recessions during the periods highlighted in yellow; 

only the Probit model fails to predict the 2019 recession. During most of the expansion phases, the 

models predict expansions. There is one major exception: LASSO, Ridge, and Logit Boost predict a 

completely fictitious recession between 2010 and 2012. In addition, all models give recession signals 

during the coronavirus pandemic, even though the official recession is already over in the second half 

of 2020. 

The timeliness of the forecasts also plays a role: For the recession starting in January 2008, Random 

Forest made its initial prediction in January 2007, while Ridge predicted the recession for the first time 

in June 2007. In August, Probit and LASSO sent the first recession signals, followed by Logit Boost in 

October. For the recession starting in October 2019 the forecasts of LASSO and Logit Boost are timely, 

predicting a recession in October 2018 or earlier. In contrast, Random Forest predicted the recession 
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in February 2019, and the Probit model in June 2019 for the first time. In terms of timeliness, the ML-

methods outperformed the benchmark model before the recession in 2019. 

The performance metrics in Table 3 show that the ML models can explain the business cycles in the 

validation folds (1983 - 2005) significantly better than the probit model. However, as expected, the out-

of-sample performance is lower than in the validation folds. In the out-of-sample period, Random 

Forest, LASSO, and Ridge outperform the probit model. 

Classifier In-Sample 
1983/01 – 2005/12 

Out-Of-Sample 
2006/01 – 2020/12 

 AUC F1 PRE REC AUC F1 PRE REC 

Random Forest 0.81 0.59 0.91 0.44 0.96 0.71 0.66 0.78 

LASSO 0.95 0.81 0.94 0.71 0.84 0.40 0.27 0.78 

Ridge 0.94 0.81 0.94 0.71 0.87 0.53 0.42 0.74 

Logit Boost 0.89 0.83 0.92 0.75 0.76 0.36 0.29 0.48 

Probit 0.78 0.42 0.42 0.42 0.84 0.37 0.33 0.41 

Table 3: In- and Out-Of-Sample Performance 

Table 4 shows the out-of-sample performance separated by recession phases, namely 2008 and 2019. 

It can be seen that the 2008 recession can be forecasted very well by the probit model. Only Random 

Forest can improve the term spread prediction. There are two reasons for this: First, the 2008 recession 

was caused by the financial crisis. Models that rely exclusively on financial market indicators have a 

clear advantage. The recession forecasts of LASSO, Ridge, and Logit Boost are worse, as financial market 

indicators only contribute partly to their forecasts. Secondly, the poor performance of these models 

stems not only from their pre-recession predictions in 2008, but also from their prediction of a fictitious 

recession in 2010. Although Ridge recognizes just as many months of the 2008 recession as the probit 

model (both models have the same recall), it has a lower precision, F1 and AUC due to the misclassified 

expansion phase in 2010-2011.  

For the 2019 recession, however, all ML-models performed better than the benchmark model. The 

latter loses a lot of predictive power due to quantitative easing. Probit and Random Forest, which rely 

solely on financial market indicators, now have a weaker performance than the more diversified 

models. 
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Classifier Out-Of-Sample 

2008 
2006/01 – 2014/12 

2019 
2015/01 – 2020/12 

 AUC F1 PRE REC AUC F1 PRE REC 

Random Forest 0.99 0.89 0.89 0.89 0.85 0.43 0.36 0.56 

LASSO 0.75 0.38 0.26 0.67 0.99 0.45 0.29 1.00 

Ridge 0.81 0.44 0.34 0.61 0.97 0.72 0.56 1.00 

Logit Boost 0.68 0.31 0.22 0.50 0.89 0.62 1.00 0.44 

Probit 0.94 0.63 0.65 0.61 0.51 0.00 0.00 0.00 

Table 4: Out-Of-Sample Performance by recession period.  

6.3 FORECASTING POWER OF INDICATORS 

After analyzing the model's performance, the focus is now on the indicators and their impact on the 

model's forecasts. For this purpose, SHAP-values are calculated and visualized with the help of 

Beeswarm plots. These plots display the SHAP values for each indicator across different observations 

in the dataset. Each point on the plot corresponds to a specific month, whereby the color illustrates 

the related indicator value: e.g., blue for low values and red for high values. The horizontal axis shows 

the size of the SHAP value: A negative SHAP value implies that the indicator reduces the probability of 

a recession in a given month, while a positive SHAP value implies an increase. The indicators are listed 

according to their mean absolute SHAP value. 

 

A. Recession 1992 
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B. Recession 2008 

 

 

C. Recession 2019 

 

Figure 5: Beeswarm-Plots for Random Forest 

In the Random Forest model (Figure 5, Appendix A2), the unemployment rate plays an important role 

during the business cycles of the validation sample. The model interprets high unemployment rates 

during recessions as a signal for an upcoming expansion and low rates as a signal for an impending 

recession. Since 2005, however, the unemployment rate has been falling continuously and has lost 

much of its forecasting power. 

The term spread is another important indicator for the model. The colors in the plot, suggest the well-

known linear relationship between the SHAP values and the term spread. The recession risk increases 

when the term spread is small or negative and decreases when the term spread is large and positive. 

For the recession forecasts of 2008, the term spread is the strongest indicator. However, this indicator 

also lost some of its predictive power between 1992 and 2019. This becomes evident when comparing 

the range of positive SHAP values. In 1992, the term spread had SHAP values between -0.25 and 0.4, 

depending on the month. In 2019, the SHAP values range only between -0.025 and 0.15. 
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This loss of importance is related to quantitative easing, which started in 2015. Given the persistently 

low interest rates, the term spread remains near zero throughout the entire period (Figure 6). There 

are no large and positive term spreads anymore, which helped the model to distinguish expansions 

from recessions. As a result, the term spread has permanently increased the risk of recession. Since 

2015, there have only been a few months in which the term spread has reduced the recession risk. 

Quantitative easing also changes the predictive power of interest rates, albeit in the opposite direction. 

High interbank rates, which served as a recession warning signal until 2015, are suppressed by QE.  The 

low short-term rates consequently reduce the recession risk between 2015 and 2021. Both effects are 

responsible for the persistently high recession probabilities (roughly 30%) in the last business cycle, 

and the fact that we could only predict the 2019 recession with probabilities slightly above the 

threshold.

 

Figure 6: Financial Indicators over Time 

While Random Forest depends heavily on the term spread, the other models are much more diversified 

in their indicators. In the other three models, energy prices are the most important early warning 

indicator. All models interpret high price increases as a recession signal. In Logit Boost, energy prices 

always have the highest mean absolute SHAP value and in LASSO and Ridge the indicator is in every 

recession period among the three most important indicators.  

Apart from the fact that all models use energy prices, every model uses roughly the same proportion 

of survey-based and financial market indicators to improve model predictions. The Beeswarm plots for 

the individual models can be found in the appendices (A3-A5). Figure 7 shows the most important 

indicators of the models, as well as how their forecasting power changed over time. The forecasting 

power is measured by the mean absolute shap value. For the purpose of comprehensiveness, indicators 
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with a permanent mean absolute SHAP value of less than 0.05 are omitted. For Random Forest, the 

changes have already been discussed in detail using the Beeswarm plots. Figure 7 displays the main 

effects, namely the loss of forecasting power of the term spread and unemployment rate. 

 

 

 

 

 

Figure 7: Mean absolute SHAP values for indicators over time. The figure is restricted to indicators with a minimum mean 
absolute SHAP value of 0.05. The calculations were carried out for the following periods: 1983-1991, 1992-2001, 2006-2015 

(only Random Forest), 2006-2009, 2009-2015, 2015-2020.  

In Logit Boost, energy prices are the most important indicator but their contribution to the model 

forecasts decreases over time. Before the 2008 recession, the term spread gained significant relevance. 

Housing prices also became important for the prediction of the recession in 2008 and the (fictious) 

recession in 2010. The other indicators fluctuate slightly without a discernible trend. With the 

exception of the three indicators mentioned, great stability can be detected. 

A similar trend can be seen in Ridge and LASSO with regard to energy prices. Over the years, the 

importance of energy prices has decreased. Both models heavily rely on a financial market indicator 

for the 2008 recession, such as the term spread, or the term spread difference. From 2008 onwards, 

we can recognize an increase in the importance of survey-based indicators like selling prices, order 

books, or the business confidence indicator. The models interpret high increases in selling prices, a 

decline in order books and a loss of confidence in the business situation as recession signals. In LASSO, 
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the influence of short-term interest rates on the model forecast increases. However, this effect is solely 

due to quantitative easing and the permanently low interest rates. It leads to a permanent reduction 

in the recession risk, which is not meaningful at all. 

The figures show that – in contrast to Random Forest – the other models have at least one strong 

indicator in every study period. This is a positive characteristic of these models, which yields to 

forecasts that are always very clear and do not fluctuate close to the cut-off value of 50 %, which was 

the case in the Random Forest model. However, one disadvantage of these models is that they predict 

a fictitious recession. 

  

Figure 8: Energy Prices and Business Confidence over Time. 

Between 2010 and 2012 all three models gave false recession signals, which mainly resulted from the 

increasing selling and energy prices (Figure 8). It should be noted that one year after the recession 

forecasts, GDP growth rates were very low (below 1%) and even negative in the first quarter of 2013. 

Although this period is not defined as a recession by the GCEE, it is close to a technical recession. 

Heilemann (2019) discusses Germany's various recession phases and also refers to the period from 

April 2012 to April 2013 as recession. This fictional recession is therefore not necessarily a bad 

prediction. Moreover, it shows that the models are very sensitive and already give recession signals 

when the GDP growth rates are small and negative, but not yet long enough for a recession.  

In a final assessment of the models, it can be argued that LASSO and Ridge are best suited to forecast 

recessions. Although they performed not as well as Random Forest in the 2008 recession, in most 

recessions they performed better due to the diversified selection of indicators. This is also evident 

when considering the validation fold metrics. They are less suitable for predicting the recession in 2008 

than Random Forest, which is due to the special character of this recession as a direct consequence of 

the financial crisis. However, they are no worse than the benchmark probit model (measured by recall). 

The models' strength lies, in particular, in their ability to provide recession risks that clearly exceed or 

lie below the cut-off value, even during quantitative easing.  
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7. CONCLUSION 

The results from Germany are consistent with many findings that have already been obtained from 

research on US recessions. The indicators selected in the SFFS have already been used frequently in the 

literature (c.f. Nissilä 2020, Vrontos et al. 2021). Random Forest in particular has chosen very 

conventional indicators, e.g. the term spread and short-term interest rates. The other models also used 

many survey-based indicators, the importance of which has often been emphasized. (Christiansen et 

al. 2014). The small number of indicators selected, supports the results from Ng (2014) and Puglia & 

Tucker (2020), who have already pointed out that a few strong indicators are sufficient for forecasting. 

The SFFS has found many strong indicators that can make good recession forecasts over a long period 

of time. The research setting aimed to avoid overoptimistic results and the so-called look-ahead bias. 

To achieve this, the selection of indicators, hyperparameters, and model training were conducted in an 

expanding window on data from before 2006, while the performance was evaluated out of sample 

(2006 – 2021). The out of sample results show that many indicators still have predictive power for the 

later recessions of 2008 and 2019. Only indicators based on interest rates lost forecasting power during 

the period of quantitative easing. In particular, energy prices and selling prices had a high predictive 

power. It was noticeable, that many models included indicators related to the US term spread but not 

the German term spread. 

In summary, Random Forest, LASSO, and Ridge outperformed the benchmark model over the whole 

out-of-sample period. All ML models were able to predict the 2019 recession more precisely than the 

probit model. For the 2008 recession, the term spread is the best indicator. The probit model and 

Random Forest, which rely heavily on the term spread, provide the best predictions. The evaluation of 

LASSO and Ridge was complicated by the fact that a period of weak and negative GDP growth rates was 

classified as a recession, which was not defined in the GCEE chronology. Nevertheless, LASSO and Ridge 

are much better suited to forecast recessions during periods of unconventional monetary policy due to 

their diversified selection of indicators.  
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APPENDIX 

A1: List of Indicators 

Subject L % 𝚫 Source OECD / FRED Code  

Financial Markets 

Long-term interest rates (10-year) (EURO) 1 0 1 OECD EA19_IRLTLT01_ST 

Monetary Aggregate M3 0 1 0 OECD EA19_MABMM301_IXOB 

Monetary Aggregate M3 (SA) 0 1 0 OECD EA19_MABMM301_GYSA 

Monetary Aggregate (M1) 0 1 0 OECD EA19_MANMM101_IXOB 

Monetary Aggregate (M1) (SA) 0 1 0 OECD EA19_MANMM101_IXOBSA 

3-month or 90-day rates and yields 1 0 1 OECD IR3TIB01_ST 

Long-term interest rates (10-years) 1 0 1 OECD IRLTLT01_ST 

Call money/interbank rate (< 24 hrs.) 1 0 1 OECD IRSTCI01_ST 

Term Spread 1 0 1 OECD LOCOSIOR_ST 

Moody's Seasoned Aaa Corporate Bond 

Yield Relative to Yield on 10-Year Treasury 

Constant Maturity 

1 0 1 FRED AAA10YM 

Moody's Seasoned Aaa Corporate Bond 

Minus Federal Funds Rate 

1 0 1 FRED AAAFFM 

Moody's Seasoned Baa Corporate Bond 

Yield Relative to Yield on 10-Year Treasury 

Constant Maturity 

1 0 1 FRED BAA10YM 

Moody's Seasoned Baa Corporate Bond 

Minus Federal Funds Rate 

1 0 1 FRED BAAFFM 

Term Spread USA 1 0 1 FRED TB6SMFFM 

Term Spread USA (Version 2) 1 0 1 FRED T10YFFM 

Term Spread Germany - Term Spread USA 1 0 1  own calculation 
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Subject L % 𝚫 Source OECD / FRED Code  

International 

Real Effective Exchange Rates 0 1 0 OECD CCRETT01_IXOB 

Real Effective Exchange Rates (EURO) 0 1 0 OECD EA19_CCRETT01_IXOB 

US$ exchange rate (National currency:USD) 1 0 1 OECD CCUSMA02_ST 

US$ exchange rate (USD:national currency) 1 0 1 OECD CCUSSP01_ST 

Export Orders 1 0 1 OECD LOCOBXOR_STSA 

Labor Market 

Job vacancies 0 1 0 OECD LMJVTTUV_ST 

Job vacancies (SA) 0 1 0 OECD LMJVTTUV_STSA 

Registered unemployment 0 0 1 OECD LMUNRLTT_ST 

Registered unemployment (SA) 0 0 1 OECD LMUNRLTT_STSA 

Unemployment rate 1 0 0 OECD LMUNRRTT_ST 

Unemployment rate (SA) 1 0 0 OECD LMUNRRTT_STSA 

Prices 

Food and non-Alcoholic beverages 0 1 0 OECD CP010000_GY 

Electricity, gas and other fuels 0 1 0 OECD CP040500_GY 

Overall  0 1 0 OECD CPALTT01_GY 

Energy  0 1 0 OECD CPGREN01_GY 

Housing  0 1 0 OECD CPGRHO01_GY 

All items non-food non-energy 0 1 0 OECD CPGRLE01_GY 

Oil Prices 0 1 0 FRED WTISPLC 
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Subject L % 𝚫 Source OECD / FRED Code  

Real Economy 

Orders 0 1 0 OECD LOCOODOR_IXOBSA 

Orders (Manufacturing) 0 1 0 OECD ODMNTO01_IXOB 

Producer Price Index (Manufacturing) 0 1 0 OECD PIEAMP02_GY 

Stock Market 

DAX 0 1 0 Yahoo 

Finance / 

Stehle 

 

Standard & Poors 500 0 1 0 Shiller  

OECD Share Prices Index 0 1 0 OECD SPASTT01_GY 

Business Tendency / Consumer Confidence Surveys 

Business Situation 1 0 1 OECD BSBUCT02_STSA 

Business Confidence indicator 1 0 1 OECD BSCICP02_STSA 

Finished Goods Stocks 1 0 1 OECD BSFGLV02_STSA 

Order Books 1 0 1 OECD BSOBLV02_STSA 

Orders Inflow 1 0 1 OECD BSOITE02_STSA 

Production Future Tendency 1 0 1 OECD BSPRFT02_STSA 

Production Tendency 1 0 1 OECD BSPRTE02_STSA 

Selling Prices 1 0 1 OECD BSSPFT02_STSA 

Consumer Confidence Indicator 1 0 1 OECD CSCICP02_STSA 

 
The "OECD / FRED Code" column shows the official abbreviation of the indicator, which is used in the database. 

The columns "L", "%", " Δ " show whether an indicator is used in the analysis in level, as a percentage change or difference to 
the previous year. If the OECD code ends in "GY", the original variable was already available as a percentage change. 

 
Data Sources: 

OECD: https://www.oecd-ilibrary.org/economics/data/main-economic-indicators_mei-data-en 
FRED: https://fred.stlouisfed.org/ 

Yahoo Finance: https://de.finance.yahoo.com/quote/%5EGDAXI/ 
Stehle: https://www.econstor.eu/handle/10419/66277 

Shiller: http://www.econ.yale.edu/~shiller/data.htm 
 

 

  

https://www.oecd-ilibrary.org/economics/data/main-economic-indicators_mei-data-en
https://fred.stlouisfed.org/
https://de.finance.yahoo.com/quote/%5EGDAXI/
https://www.econstor.eu/handle/10419/66277
http://www.econ.yale.edu/~shiller/data.htm
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A2: Random Forest - Beeswarm-Plots 

A. Recession 1992 

 

B. Recession 2001 

 

C. Recession 2008 

 

 

 

 

 

 



33 
 

D. Recession 2019 
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A3: Logit Boost - Beeswarm-Plots 

A. Recession 1992 

 

B. Recession 2001 
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C. Recession 2008  

 

D. Fictious Recession 2010 
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E. Recession 2019 
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A4: Ridge - Beeswarm-Plots 

A. Recession 1992 

 

B. Recession 2001 

 

C. Recession 2008  
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D. Fictious Recession 2010 

 

E. Recession 2019 
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A5: LASSO - Beeswarm-Plots 

A. Recession 1992 

 

B. Recession 2001 
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C. Recession 2008  

 

D. Fictious Recession 2010
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E. Recession 2019
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A6: List of Python Packages 

Python Package Webpage 

Logitboost https://logitboost.readthedocs.io/ 

Matplotlib https://matplotlib.org/ 

Mlxtend https://rasbt.github.io/mlxtend/ 

Numpy https://numpy.org/ 

Optuna https://optuna.org/ 

Pandas https://pandas.pydata.org/ 

Scikit-Learn (Sklearn) https://scikit-learn.org/stable/ 

SHAP https://shap.readthedocs.io/en/latest/ 

 

https://logitboost.readthedocs.io/
https://matplotlib.org/
https://rasbt.github.io/mlxtend/
https://numpy.org/
https://optuna.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://shap.readthedocs.io/en/latest/
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